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Plastic CD34 and CD38 expression in adult B–cell precursor
acute lymphoblastic leukemia explains ambiguity
of leukemia-initiating stem cell populations
Leukemia (2017) 31, 731–734; doi:10.1038/leu.2016.315

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is an
aggressive hematologic malignancy of bone-marrow (BM)-derived
lymphoid precursor cells at various stages of differentiation.1

Although first-line therapy with chemotherapy and—in the case of
BCR-ABL1 positive ALL—tyrosine kinase inhibitors is initially
highly effective with remission rates of 490%, the overall survival
rate in adult patients is 40–50% across all risk groups.1–3 Relapse
originates from putative leukemia-initiating cells (LICs) that
are intrinsically resistant to chemotherapeutic regimens, which
may explain the poor long-term prognosis of patients with
disease recurrence. Eradication of LICs thus is a principal aim of
novel therapeutic approaches. A prerequisite for developing
effective LIC-targeted treatments is the ability to identify and
clinically monitor LICs in ALL, a goal that has to date been
elusive. The existence, phenotype, biological properties and the
hierarchical organization of LICs in BCP-ALL remain highly
controversial.4

The prospective enrichment of LICs in ALL using the surface
markers CD34 and CD38 (also in combination with other markers)
—as well-established in acute myelogenous leukemia5–8—largely
failed, resulting in highly variable results.9–12 We investigated the
reason for these ambiguous results by observing the expression
of these markers even at single cell level in high temporal
resolution.

We found that CD34 and CD38 are highly plastic on individual
BCP-ALL cells and are up- or downregulated in one cell generation
within hours, and may not be useful for prospective LIC isolation.
To investigate the plasticity of CD34 and CD38 surface marker

expression in BCP-ALL, we utilized a unique ALL patient-derived
long-term cell culture system (PDLTCs) established from patient
PH.13 The PDLTC-PH reflects the polyclonal propensity of the
disease and remains genetically and functionally stable in culture
for more than 6 months (Nijmeijer et al.13 and data not shown).
Furthermore, we achieved to generate isogenic clonal PDLTC-PH
subcultures, which are invaluable to investigate relations between
phenotypes and distinct function.
First, we confirmed the presence of cells with LIC activity in

PDLTC-PH by injecting 5 × 106 unsorted bulk cells intravenously
into sublethally-irradiated immune-compromised NSG mice,
revealing human ALL cell engraftment and leukemia progression
in the peripheral blood (PB) of the recipients via FACS as well as
their survival (Figure 1a, Supplementary Methods). After 62 days,
we found the first ALL cells in the PB, and the human ALL cell
chimerism successively increased over time until the mice died of
the disease after 119 days in average (± 4.6 days), with a high
proportion of ALL cells in the BM (Figure 1a). After confirming the
existence of LICs in PDLTC-PH, we checked for the cell surface
expression of CD34 (APC clone 8G12, BD, Heidelberg, Germany)
and CD38 (PE clone HB7 eBioscience, Frankfurt, Germany) in these
PDLTCs via FACS (FACS Canto, BD). These are indicative surface
markers to determine normal hematopoietic stem and progenitor
populations, and LIC-enriched fractions in acute myelogenous
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leukemia.5–8 We revealed a typical pattern of at least four
subpopulations based on differential CD34 and CD38 expression
(Figure 1b). Next, we prospectively isolated three subpopulations
based on their differential CD34 and CD38 surface expression
(CD34+CD38− , CD34+CD38+, CD34−CD38+) via FACS sorting
(FACS Aria, BD) and transplanted 1 × 106 living cells into
sublethally irradiated NSG recipients by tail vein injection
(Figure 1c). As demonstrated before,9–12 the markers CD34/CD38
did not help to enrich for LICs in PDLTC-PH. All three sub-
populations showed very similar engraftments and leukemia
progression in vivo (Figure 1c).
Despite the fact that PDLTC-PH consists of distinctive cell

populations according to the well-described stem/progenitor
markers CD34/CD38, all tested subpopulations have identical
leukemogenic potential irrespective of their CD34/CD38 expres-
sion pattern. Next, we wanted to test whether these two surface
markers are stably expressed over time. Therefore, we prospec-
tively isolated four subpopulations based on their distinctive
CD34/CD38 expression via FACS and cultured them for 3 months
(Figure 2a). The FACS analysis after 30 days and 90 days of culture
revealed a return of the FACS profile to the starting culture, all four
subpopulations have re-emerged over time. Interestingly, only
CD34+CD38− cells remained more stable in their marker profile
and a large proportion of cells maintained CD34+CD38− over
time (Figure 2a). This observation would argue against a more
immature stage of these cells as anticipated by the HSPC-like
CD34+/CD38− expression pattern seen in normal hematopoiesis.
To exclude the possibility that reversion of the marker profile was
attributed to selection and outgrowth of contaminating cells
resulting from cell sort impurities and to evaluate the dynamics of
this process, we increased our temporal resolution and repeatedly
checked the surface marker expression already a few hours after
prospective cell isolation via FACS (Supplementary Figure S1).
Strikingly, we noticed a successive increase in marker-reverted
populations starting already 2 h after isolation (Supplementary
Figure S1). To further confirm that the marker reversion truly
originates from individual cells, we FACS-sorted hundreds of
individual cells of all four CD34/CD38 quadrants and established
single clonal-derived subcultures of PDLTC-PH (Figure 2b). The
clonal outgrowth varied between 10.4% (CD34−CD38− ) and

16.5% (CD34+CD38− ). Even from single cells, independent of
their distinct CD34/CD38 phenotype at sorting, we determined
that 100% of single cells gave rise to progeny representing at least
three subpopulations, and 79% of them even gave rise to all 4
subpopulations after 48 days in culture (Figure 2b). This result
clearly shows that the expression of CD34 and CD38 is not stable
over time, and since all starting cells irrespective of their marker
profile give rise to all four subpopulations, also speaks against a
linear hierarchy of cells depicted by these markers.
In order to determine the plasticity of marker expression in

individual cells over time, we continuously observed single PDLTC-PH
cells by time-lapse epifluorescence microscopy-based cell tracking
for several days (Figure 2c), as previously described.14 This
technology allows to measure surface marker up- or downregulation
in living cells in real-time, using fluorescent antibodies against CD34
and CD38 at low concentrations in the culture medium,14 without
losing individual cell identity. Pre-stained cells for CD34 and CD38
with fluorescent antibodies were continuously observed until their
first division in vitro. And indeed, we found changes in marker
expression—both onset of markers in originally negative cells and
downregulation of marker-positive cells at single cell resolution
within one cell generation (Figure 2c; Supplementary Figure S2;
Supplementary Movies S1 to S3). In particular, the majority of double
negative prospectively isolated PDLTC-PH cells upregulated CD34
and/or CD38 successively within one cell generation, although with
various kinetics and intensities (Figure 2c). This clearly indicates a
highly fluctuating and transient expression of both markers, which
does not require cell division.
Do these results indicate that there is no distinction of cells with

different LIC properties within the PDLTC, and that consequently
every cell has LIC activity? Since we failed to use CD34/CD38
enrichments for LICs, we changed the strategy and grew subclones
derived from single FACS-sorted PDLTC-PH cells of all four FACS
quadrants, as described earlier. The tail vein transplantation of 5×106

cells of individual subclones in sublethally irradiated NSG recipients
clearly distinguished subclones, causing a fast progressing disease,
whereas some subclones did not give rise to full blown leukemia at
all within 155 days of observation (Figure 2d and Supplementary
Figure S3). Importantly, all clonal cells homed and engrafted in the
BM, even those that showed minimal BM outgrowth and no
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Figure 1. PDLTC-PH contains cells with leukemia-initiating potential in vivo. (a) Xenograft transplantation of PDLTC-PH cells. Survival and
leukemic peripheral blood engraftment of NSG mice (n= 7) receiving bulk PDLTC-PH cells. (b) Surface CD34 and CD38 expression of PDLTC-PH
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The mean and s.d. are displayed.
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contribution to peripheral ALL cells (Figure 2d). These results again
highlight the heterogeneity of individual ALL cells with variable
ability to engraft and progress to leukemia in NSG mice and strongly
propose the existence of LICs in BCP-ALL.
Is the, here described, plasticity of ALL cells restricted to the

surface expression of some molecules, or do ALL cells change their
molecular composition, functionality and even their identity over
time? We need to find out whether this change is unidirectional and/
or linear, following a differentiation path or whether some ALL cells
may be able to dedifferentiate and switch between LICs and non-
LICs. While in many tissues a hierarchical organization of cancer
development is proposed, Ratajczak and coworkers reported similar

fluctuating expression of potential cancer stem cell surface markers
CD24 and CD44 in an ovarian cancer cell line.15 Our findings did not
exclude the existence of a minor LIC population, which is uncovered
due to the lack of respective markers. The clonal outgrowth and also
the various leukemogenicity of established clonal subcultures
highlight the fact that not every ALL cell has LIC potential. Only
the use of CD34 and CD38 will not be sufficient to enrich for them.
The further analysis of this highly plastic ALL model, which

revealed a non-hierarchical cellular development in ALL can be
used to explore the properties of LICs in ALL, as the single clone
system was capable to dissect between leukemogenic and non-
leukemogenic single cells. These analyses are pivotal to find
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Figure 2. Plasticity in CD34 and CD38 expression counteracts a prospective enrichment of existing LIC clones. (a) Experimental scheme and
FACS results of marker expression after prospective enrichment of subpopulations upon a 90-day-culture. (b) Experimental scheme and FACS
results of marker expression of subclones after 48 days in culture. Hundred single-cell-derived subclones obtained via single cell FACS sort of
cells from all four subpopulations were grown and the marker profile was analyzed via FACS. All clones consisted of at least three
subpopulations of cells after 48 days in culture. (c) Experimental scheme and continuous microscopy-based tracking of marker expression at
single cell level. Fifty single cells of all four subpopulations were observed until the mother cell divided. High proportion of marker reversion
was found especially in CD34−CD38− cells. (d) Xenotransplantation of seven PDLTC-PH subclones. Survival of NSG mice receiving individual
subclones (n= 3 mice per subclone). Only clone 1 and 2 resulted in early leukemic death of recipients, all other mice survived the observation
period of 155 days. Significant difference calculated by the log-rank test. Leukemic engraftment in recipient mice that survived 155 days of
observation. The mean and s.d. are displayed.
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proper markers for LIC identification in ALL, which is a prerequisite
for the development of novel LIC-directed therapies. These novel
strategies are urgently needed in order to improve long-term
outcome and survival in ALL patients.
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Frequent evolution of copy number alterations in CLL
following first-line treatment with FC(R) is enriched with TP53
alterations: results from the CLL8 trial
Leukemia (2017) 31, 734–738; doi:10.1038/leu.2016.317

Malignant populations constitute a mixture of multiple genetically
distinct clones, which can often be dramatically altered with
therapy.1 Clonal evolution was recently shown to be frequent in
chronic lymphocytic leukemia (CLL) by sequential whole-exome
sequencing of matched sequential samples taken at treatment
initiation and first relapse following chemo(immuno)therapy from

59 individuals.2 This finding raises important questions: Is
evolution occurring as frequently during the preceding ‘watch
and wait’ period, or is it primarily driven by therapeutic
intervention? Are there clinical features associated with higher
rates of evolution? Do the genetic variations that emerge over the
course of evolution alter the clinical outcome?
To address these questions, we analyzed serial samples from

103 individuals treated within the CLL8 trial, in which patients
uniformly received fludarabine and cyclophosphamide as first-line
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