Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Targeting vasculogenesis to prevent progression in multiple myeloma

Abstract

The role of endothelial progenitor cell (EPC)-mediated vasculogenesis in hematological malignancies is not well explored. Here, we showed that EPCs are mobilized from the bone marrow (BM) to the peripheral blood at early stages of multiple myeloma (MM); and recruited to MM cell-colonized BM niches. Using EPC-defective ID1+/− ID3−/− mice, we found that MM tumor progression is dependent on EPC trafficking. By performing RNA-sequencing studies, we confirmed that endothelial cells can enhance proliferation and favor cell-cycle progression only in MM clones that are smoldering-like and have dependency on endothelial cells for tumor growth. We further confirmed that angiogenic dependency occurs early and not late during tumor progression in MM. By using a VEGFR2 antibody with anti-vasculogenic activity, we demonstrated that early targeting of EPCs delays tumor progression, while using the same agent at late stages of tumor progression is ineffective. Thus, although there is significant angiogenesis in myeloma, the dependency of the tumor cells on EPCs and vasculogenesis may actually precede this step. Manipulating vasculogenesis at an early stage of disease may be examined in clinical trials in patients with smoldering MM, and other hematological malignancies with precursor conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Moehler TM, Ho AD, Goldschmidt H, Barlogie B . Angiogenesis in hematologic malignancies. Crit Rev Oncol Hematol 2003; 45: 227–244.

    Article  CAS  PubMed  Google Scholar 

  2. Dong X, Han ZC, Yang R . Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol 2007; 62: 105–118.

    Article  PubMed  Google Scholar 

  3. Eleutherakis-Papaiakovou V, Karali M, Kokkonouzis I, Tiliakos I, Dimopoulos MA . Bone marrow angiogenesis and progression in multiple myeloma: clinical significance and therapeutic approach. Leuk Lymphoma 2003; 44: 937–948.

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet P, Jain RK . Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li WW, Hutnik M, Gehr G . Antiangiogenesis in haematological malignancies. Br J Haematol 2008; 143: 622–631.

    Article  PubMed  Google Scholar 

  6. Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O'Donnell MR et al. Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol 2011; 154: 533–535.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ria R, Reale A, De Luisi A, Ferrucci A, Moschetta M, Vacca A . Bone marrow angiogenesis and progression in multiple myeloma. Am J Bood Res 2011; 1: 76–89.

    CAS  Google Scholar 

  8. Ziyad S, Iruela-Arispe ML . Molecular mechanisms of tumor angiogenesis. Genes Cancer 2011; 2: 1085–1096.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca et al. Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta 2014; 1846: 26–39.

    CAS  PubMed  Google Scholar 

  10. Bhutani M, Turkbey B, Tan E, Kemp TJ, Pinto LA, Berg AR et al. Bone marrow angiogenesis in myeloma and its precursor disease: a prospective clinical trial. Leukemia 2014; 28: 413–416.

    Article  CAS  PubMed  Google Scholar 

  11. Kyle RA, Rajkumar SV . Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 2009; 23: 3–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    Article  PubMed  Google Scholar 

  13. Martin-Ramirez J, Hofman M, van den Biggelaar M, Hebbel RP, Voorberg J . Establishment of outgrowth endothelial cells from peripheral blood. Nat Protoc 2012; 7: 1709–1715.

    Article  CAS  PubMed  Google Scholar 

  14. Azab AK, Sahin I, Azab F, Moschetta M, Mishima Y, Burwick N et al. CXCR7-dependent angiogenic mononuclear cells trafficking regulates tumor progression in multiple myeloma. Blood 2014; 124: 1905–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013; 123: 1542–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 2012; 120: 376–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood 2014; 123: 4120–4131.

    Article  CAS  PubMed  Google Scholar 

  18. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011; 332: 687–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol 2012; 30: 858–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014; 157: 726–739.

    Article  CAS  PubMed  Google Scholar 

  21. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999–1007.

    Article  CAS  PubMed  Google Scholar 

  22. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoder MC, Ingram DA . The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta 2009; 1796: 50–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang H, Vakil V, Braunstein M, Smith EL, Maroney J, Chen L et al. Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 2005; 105: 3286–3294.

    Article  CAS  PubMed  Google Scholar 

  26. Bhaskar A, Gupta R, Kumar L, Sharma A, Sharma MC, Kalaivani M et al. Circulating endothelial progenitor cells as potential prognostic biomarker in multiple myeloma. Leuk Lymphoma 2012; 53: 635–640.

    Article  CAS  PubMed  Google Scholar 

  27. Taylor M, Billiot F, Marty V, Rouffiac V, Cohen P, Tournay E et al. Reversing resistance to vascular-disrupting agents by blocking late mobilization of circulating endothelial progenitor cells. Cancer Discov 2012; 2: 434–449.

    Article  CAS  PubMed  Google Scholar 

  28. Chakroborty D, Chowdhury UR, Sarkar C, Baral R, Dasgupta PS, Basu S . Dopamine regulates endothelial progenitor cell mobilization from mouse bone marrow in tumor vascularization. J Clin Invest 2008; 118: 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chesi M, Robbiani DF, Sebag M, Chng WJ, Affer M, Tiedemann R et al. AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 2008; 13: 167–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Calcinotto A, Ponzoni M, Ria R, Grioni M, Cattaneo E, Villa I et al. Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncoimmunology 2015; 4: e1008850.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mitsiades CS, Anderson KC, Carrasco DR . Mouse models of human myeloma. Hematol Oncol Clin North Am 2007; 21: 1051–1069, viii.

    Article  PubMed  Google Scholar 

  32. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  PubMed  Google Scholar 

  33. Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 2000; 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  34. Lyden D, Young AZ, Zagzag D, Yan W, Gerald W, O'Reilly R et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 1999; 401: 670–677.

    Article  CAS  PubMed  Google Scholar 

  35. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7: 1194–1201.

    Article  CAS  PubMed  Google Scholar 

  36. Ciarrocchi A, Jankovic V, Shaked Y, Nolan DJ, Mittal V, Kerbel RS et al. Id1 restrains p21 expression to control endothelial progenitor cell formation. PLoS One 2007; 2: e1338.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N et al. Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 2009; 1796: 33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roodhart JM, Langenberg MH, Daenen LG, Voest EE . Translating preclinical findings of (endothelial) progenitor cell mobilization into the clinic; from bedside to bench and back. Biochim Biophys Acta 2009; 1796: 41–49.

    CAS  PubMed  Google Scholar 

  39. De Luisi A, Ferrucci A, Coluccia AM, Ria R, Moschetta M, de Luca E et al. Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma. Clin Cancer Res 2011; 17: 1935–1946.

    Article  CAS  PubMed  Google Scholar 

  40. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M et al. Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 2005; 23: 5334–5346.

    Article  CAS  PubMed  Google Scholar 

  41. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 2006; 66: 184–191.

    Article  CAS  PubMed  Google Scholar 

  42. Moschetta M, Di Pietro G, Ria R, Gnoni A, Mangialardi G, Guarini et al. Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. Eur J Cancer 2010; 46: 420–429.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Animal Research Facility (ARF) team of the Dana Farber Cancer Institute for the valuable technical support. We thank Dr Benezra R (Memorial Sloan–Kettering Institute, NY, USA) for providing us the ID1/ID3 transgenic mice. We thank Sonal Jhaveri (PGSAO, Dana Farber Cancer Institute) for editing the manuscript. We thank Eli Lilly & Co. for providing the DC101 antibody. This work was supported by NIH R01 CA181683-01A1 and the Leukemia and Lymphoma Society. This work was supported by Associazione Italiana per la Ricerca sul Cancro, AIRC 5 × 1000 Molecular Clinical Oncology Special Program, Milan, IT (grant no. 9965 to M Bellone and A Vacca). Arianna Calcinotto was awarded a fellowship from AIRC/FIRC and conducted this study in partial fulfillment of her PhD at San Raffaele University.

Author contributions

MM and IMG contributed to conception and design. YM, YK, BP, LP, YA, AC, CU, IS, AS, SG, JS, MRR and SM contributed to acquisition of data. MM, YM, YK, AMR and IMG contributed to analysis and interpretation of data. MM, MB, MC, FP, PLB, AMR and IMG contributed to writing, review and/or revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A M Roccaro or I M Ghobrial.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschetta, M., Mishima, Y., Kawano, Y. et al. Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia 30, 1103–1115 (2016). https://doi.org/10.1038/leu.2016.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.3

This article is cited by

Search

Quick links