Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanisms of resistance

Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia

Abstract

Treatment resistance becomes a challenge at some point in the course of most patients with chronic lymphocytic leukemia (CLL). This applies to fludarabine-based regimens, and is also an increasing concern in the era of more targeted therapies. As cells with low-replicative activity rely on repair that triggers checkpoint-independent noncanonical pathways, we reasoned that targeting the nucleotide excision repair (NER) reaction addresses a vulnerability of CLL and might even synergize with fludarabine, which blocks the NER gap-filling step. We interrogated here especially the replication-independent transcription-coupled-NER ((TC)-NER) in prospective trial patients, primary CLL cultures, cell lines and mice. We screen selected (TC)-NER-targeting compounds as experimental (illudins) or clinically approved (trabectedin) drugs. They inflict transcription-stalling DNA lesions requiring TC-NER either for their removal (illudins) or for generation of lethal strand breaks (trabectedin). Genetically defined systems of NER deficiency confirmed their specificity. They selectively and efficiently induced cell death in CLL, irrespective of high-risk cytogenetics, IGHV status or clinical treatment history, including resistance. The substances induced ATM/p53-independent apoptosis and showed marked synergisms with fludarabine. Trabectedin additionally perturbed stromal-cell protection and showed encouraging antileukemic profiles even in aggressive and transforming murine CLL. This proof-of-principle study established (TC)-NER as a mechanism to be further exploited to resensitize CLL cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  Google Scholar 

  2. Cramer P, Langerbeins P, Eichhorst B, Hallek M . Advances in first-line treatment of chronic lymphocytic leukemia: current recommendations on management and first-line treatment by the German CLL Study Group (GCLLSG). Eur J Haematol 2016; 96: 9–18.

    Article  Google Scholar 

  3. Farooqui MZH, Valdez J, Martyr S, Aue G, Saba N, Niemann CU et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol 2015; 16: 169–176.

    Article  CAS  Google Scholar 

  4. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  Google Scholar 

  5. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  Google Scholar 

  6. Dreger P, Schetelig J, Andersen N, Corradini P, van Gelder M, Gribben J et al. Managing high-risk CLL during transition to a new treatment era: stem cell transplantation or novel agents? Blood 2014; 124: 3841–3849.

    Article  CAS  Google Scholar 

  7. Zheng CL, Wang NJ, Chung J, Moslehi H, Sanborn JZ, Hur JS et al. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep 2014; 9: 1228–1234.

    Article  CAS  Google Scholar 

  8. Spivak G . Nucleotide excision repair in humans. DNA Repair (Amst) 2015; 36: 13–18.

    Article  CAS  Google Scholar 

  9. Nadkarni A, Burns JA, Gandolfi A, Chowdhury MA, Cartularo L, Berens C et al. Nucleotide excision repair and transcription-coupled DNA repair abrogate the impact of DNA damage on transcription. J Biol Chem 2015; 291: 848–861.

    Article  Google Scholar 

  10. Schumacher B, Garinis GA, Hoeijmakers JHJ . Age to survive: DNA damage and aging. Trends Genet 2008; 24: 77–85.

    Article  CAS  Google Scholar 

  11. Hoeijmakers JHJ . Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366–374.

    Article  CAS  Google Scholar 

  12. Rao V, Plunkett W . Activation of a p53-mediated apoptotic pathway in quiescent lymphocytes after the inhibition of DNA repair by fludarabine. Clin Cancer Res 2003; 9: 3204–3212.

    CAS  PubMed  Google Scholar 

  13. Sandoval A, Consoli U, Plunkett W . Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin Cancer Res 1996; 2: 1731–1741.

    CAS  PubMed  Google Scholar 

  14. Vasyutina E, Boucas JM, Bloehdorn J, Aszyk C, Crispatzu G, Stiefelhagen M et al. The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL. Leukemia 2015; 29: 2003–2014.

    Article  CAS  Google Scholar 

  15. Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114: 4675–4686.

    Article  CAS  Google Scholar 

  16. Delia D, Mizutani S, Panigone S, Tagliabue E, Fontanella E, Asada M et al. ATM protein and p53-serine 15 phosphorylation in ataxia-telangiectasia (AT) patients and at heterozygotes. Br J Cancer 2000; 82: 1938–1945.

    Article  CAS  Google Scholar 

  17. Schobert R, Seibt S, Mahal K, Ahmad A, Biersack B, Effenberger-Neidnicht K et al. Cancer selective metallocenedicarboxylates of the fungal cytotoxin illudin M. J Med Chem 2011; 54: 6177–6182.

    Article  CAS  Google Scholar 

  18. Knauer S, Biersack B, Zoldakova M, Effenberger K, Milius W, Schobert R . Melanoma-specific ferrocene esters of the fungal cytotoxin illudin M. Anticancer Drugs 2009; 20: 676–681.

    Article  CAS  Google Scholar 

  19. Prinz C, Vasyutina E, Lohmann G, Schrader A, Romanski S, Hirschhäuser C et al. Organometallic nucleosides induce non-classical leukemic cell death that is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden. Mol Cancer 2015; 14: 114.

    Article  Google Scholar 

  20. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  Google Scholar 

  21. Lawrence MS, Stojanov P, Polak P, Kryukov G V, Cibulskis K, Sivachenko A et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013; 499: 214–218.

    Article  CAS  Google Scholar 

  22. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  Google Scholar 

  23. NGJ Jaspers, Raams A, Kelner MJ, Ng JMY, Yamashita YM, Takeda S et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst) 2002; 1: 1027–1038.

    Article  Google Scholar 

  24. Koeppel F, Poindessous V, Lazar V, Raymond E, Sarasin A, Larsen AK . Irofulven cytotoxicity depends on transcription-coupled nucleotide excision repair and is correlated with XPG expression in solid tumor cells. Clin Cancer Res 2004; 10: 5604–5613.

    Article  CAS  Google Scholar 

  25. Escargueil AE, Poindessous V, Soares DG, Sarasin A, Cook PR, Larsen AK . Influence of irofulven, a transcription-coupled repair-specific antitumor agent, on RNA polymerase activity, stability and dynamics in living mammalian cells. J Cell Sci 2008; 121: 1275–1283.

    Article  CAS  Google Scholar 

  26. Babu V, Hofmann K, Schumacher B A C . elegans homolog of the Cockayne syndrome complementation group A gene. DNA Repair (Amst) 2014; 24: 57–62.

    Article  CAS  Google Scholar 

  27. MacDonald JR, Muscoplat CC, Dexter DL, Mangold GL, Chen SF, Kelner MJ et al. Preclinical antitumor activity of 6-hydroxymethylacylfulvene, a semisynthetic derivative of the mushroom toxin illudin S. Cancer Res 1997; 57: 279–283.

    CAS  PubMed  Google Scholar 

  28. Mueller MM, Castells-Roca L, Babu V, Ermolaeva MA, Müller R-U, Frommolt P et al. DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage. Nat Cell Biol 2014; 16: 1168–1179.

    Article  CAS  Google Scholar 

  29. Takebayashi Y, Pourquier P, Zimonjic DB, Nakayama K, Emmert S, Ueda T et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat Med 2001; 7: 961–966.

    Article  CAS  Google Scholar 

  30. Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA . Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 88: 147–153.

  31. Rosenwald A, Chuang EY, Davis RE, Wiestner A, Alizadeh AA, Arthur DC et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood 2004; 104: 1428–1434.

    Article  CAS  Google Scholar 

  32. Blay J-Y, Leahy MG, Nguyen BB, Patel SR, Hohenberger P, Santoro A et al. Randomised phase III trial of trabectedin versus doxorubicin-based chemotherapy as first-line therapy in translocation-related sarcomas. Eur J Cancer 2014; 50: 1137–1147.

    Article  CAS  Google Scholar 

  33. Demetri GD, Chawla SP, von Mehren M, Ritch P, Baker LH, Blay JY et al. Efficacy and safety of trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J Clin Oncol 2009; 27: 4188–4196.

    Article  CAS  Google Scholar 

  34. Garinis GA, Uittenboogaard LM, Stachelscheid H, Fousteri M, van Ijcken W, Breit TM et al. Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nat Cell Biol 2009; 11: 604–615.

    Article  CAS  Google Scholar 

  35. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM . Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 2000; 275: 9390–9395.

    Article  CAS  Google Scholar 

  36. Henrich S, Christopherson RI . Multiple forms of nuclear p53 formed in human Raji and MEC1 cells treated with fludarabine. Leukemia 2008; 22: 657–660.

    Article  CAS  Google Scholar 

  37. Sivina M, Hartmann E, Vasyutina E, Boucas JM, Breuer A, Keating MJ et al. Stromal cells modulate TCL1 expression, interacting AP-1 components and TCL1-targeting micro-RNAs in chronic lymphocytic leukemia. Leukemia 2012; 26: 1812–1820.

    Article  CAS  Google Scholar 

  38. Grosso F, Jones RL, Demetri GD, Judson IR, Blay J-Y, Le Cesne A et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol 2007; 8: 595–602.

    Article  CAS  Google Scholar 

  39. Monk BJ, Herzog TJ, Kaye SB, Krasner CN, Vermorken JB, Muggia FM et al. Trabectedin plus pegylated liposomal Doxorubicin in recurrent ovarian cancer. J Clin Oncol 2010; 28: 3107–3114.

    Article  CAS  Google Scholar 

  40. Jordan K, Jahn F, Jordan B, Kegel T, Müller-Tidow C, Rüssel J . Trabectedin: supportive care strategies and safety profile. Crit Rev Oncol Hematol 2015; 94: 279–290.

    Article  Google Scholar 

  41. D’Incalci M, Badri N, Galmarini CM, Allavena P . Trabectedin a drug acting on both cancer cells and the tumour microenvironment. Br J Cancer 2014; 111: 646–650.

    Article  Google Scholar 

  42. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  Google Scholar 

  43. Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013; 23: 249–262.

    Article  CAS  Google Scholar 

  44. Suljagic M, Longo PG, Bennardo S, Perlas E, Leone G, Laurenti L et al. The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Eμ- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood 2010; 116: 4894–4905.

    Article  CAS  Google Scholar 

  45. Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 2006; 108: 1334–1338.

    Article  CAS  Google Scholar 

  46. Takagi K, Kawai Y, Yamauchi T, Iwasaki H, Ueda T . Synergistic effects of combination with fludarabine and carboplatin depend on fludarabine-mediated inhibition of enhanced nucleotide excision repair in leukemia. Int J Hematol 2011; 94: 378–389.

    Article  CAS  Google Scholar 

  47. Zecevic A, Sampath D, Ewald B, Chen R, Wierda W, Plunkett W . Killing of chronic lymphocytic leukemia by the combination of fludarabine and oxaliplatin is dependent on the activity of XPF endonuclease. Clin Cancer Res 2011; 17: 4731–4741.

    Article  CAS  Google Scholar 

  48. Barret JM, Calsou P, Laurent G, Salles B . DNA repair activity in protein extracts of fresh human malignant lymphoid cells. Mol Pharmacol 1996; 49: 766–771.

    CAS  PubMed  Google Scholar 

  49. Herzig MCS, Trevino A V, Liang H, Salinas R, Waters SJ, MacDonald JR et al. Apoptosis induction by the dual-action DNA- and protein-reactive antitumor drug irofulven is largely Bcl-2-independent. Biochem Pharmacol 2003; 65: 503–513.

    Article  CAS  Google Scholar 

  50. Wang W, Waters SJ, MacDonald JR, Roth C, Shentu S, Freeman J et al. Irofulven (6-hydroxymethylacylfulvene, MGI 114)-induced apoptosis in human pancreatic cancer cells is mediated by ERK and JNK kinases. Anticancer Res 22: 559–564.

  51. Moneo V, Serelde BG, Fominaya J, Leal JFM, Blanco-Aparicio C, Romero L et al. Extreme sensitivity to Yondelis (Trabectedin, ET-743) in low passaged sarcoma cell lines correlates with mutated p53. J Cell Biochem 2007; 100: 339–348.

    Article  CAS  Google Scholar 

  52. Damia G, Silvestri S, Carrassa L, Filiberti L, Faircloth GT, Liberi G et al. Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways. Int J Cancer 2001; 92: 583–588.

    Article  CAS  Google Scholar 

  53. Poindessous V, Koeppel F, Raymond E, Comisso M, Waters SJ, Larsen AK . Marked activity of irofulven toward human carcinoma cells: comparison with cisplatin and ecteinascidin. Clin Cancer Res 2003; 9: 2817–2825.

    CAS  PubMed  Google Scholar 

  54. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372: 2509–2520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG KFO-286) to MaHe (HE3552/3-2), BS, Mi Ha, HCR and CDH (HE7828/1-2). A Max-Eder Excellence Award by the German Cancer Aid (to MaHe), the CLL Global Research Foundation (to MaHe), the German Jose-Carreras foundation (to MaHe, DJCLS R 12/08) and the local CECAD initiative (to MaHe and BS) further supported this work. Trabectedin was provided by PhamaMar (Madrid, Spain); bendamustine by Mundipharma (Limburg, Germany). A Eggle (Salzburg, Austria) provided C57BL/6 Eμ-TCL1 founders. We thank N Riet for help with animal work.

Author contributions

GL designed, performed, analyzed the experiments and wrote the manuscript. EV analyzed statistical data on the CLL8 trial data set and wrote the manuscript. JB performed gene expression profiling and statistical data analysis on the CLL8 trial data set. PM, NR, CP, JS, VB and CDH performed experiments and analyzed data. DGE, GK and HCR provided mice. LC provided A-T cell lines. RS and BB designed/supervised compound chemistry. MiHa and SS provided access to trial samples and clinical data. MaHe and BS conceptualized the study, designed experiments, analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Herling.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohmann, G., Vasyutina, E., Bloehdorn, J. et al. Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia. Leukemia 31, 1177–1186 (2017). https://doi.org/10.1038/leu.2016.294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.294

This article is cited by

Search

Quick links