Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis

Abstract

Despite the pivotal role of MYC in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) and many other cancers, the mechanisms underlying MYC-mediated tumorigenesis remain inadequately understood. Here we utilized a well-characterized zebrafish model of Myc-induced T-ALL for genetic studies to identify novel genes contributing to disease onset. We found that heterozygous inactivation of a tricarboxylic acid (TCA) cycle enzyme, dihydrolipoamide S-succinyltransferase (Dlst), significantly delayed tumor onset in zebrafish without detectable effects on fish development. DLST is the E2 transferase of the α-ketoglutarate (α-KG) dehydrogenase complex (KGDHC), which converts α-KG to succinyl-CoA in the TCA cycle. RNAi knockdown of DLST led to decreased cell viability and induction of apoptosis in human T-ALL cell lines. Polar metabolomics profiling revealed that the TCA cycle was disrupted by DLST knockdown in human T-ALL cells, as demonstrated by an accumulation of α-KG and a decrease of succinyl-CoA. Addition of succinate, the downstream TCA cycle intermediate, to human T-ALL cells was sufficient to rescue defects in cell viability caused by DLST inactivation. Together, our studies uncovered an important role for DLST in MYC-mediated leukemogenesis and demonstrated the metabolic dependence of T-lymphoblasts on the TCA cycle, thus providing implications for targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 2003; 21: 3616–3622.

    Article  Google Scholar 

  2. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28: 648–654.

    Article  Google Scholar 

  3. Marks DI, Paietta EM, Moorman AV, Richards SM, Buck G, DeWald G et al. T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993). Blood 2009; 114: 5136–5145.

    Article  CAS  Google Scholar 

  4. Nesbit CE, Tersak JM, Prochownik EV . MYC oncogenes and human neoplastic disease. Oncogene 1999; 18: 3004–3016.

    Article  CAS  Google Scholar 

  5. Koch U, Radtke F . Notch in T-ALL: new players in a complex disease. Trends Immunol 2011; 32: 434–442.

    Article  CAS  Google Scholar 

  6. Palomero T, Ferrando A . Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas. Clin Cancer Res 2008; 14: 5314–5317.

    Article  CAS  Google Scholar 

  7. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 2006; 26: 8022–8031.

    Article  CAS  Google Scholar 

  8. Tzoneva G, Ferrando AA . Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol 2012; 360: 163–182.

    CAS  PubMed  Google Scholar 

  9. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  10. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096–2109.

    Article  CAS  Google Scholar 

  11. Stewart M, Cameron E, Campbell M, McFarlane R, Toth S, Lang K et al. Conditional expression and oncogenicity of c-myc linked to a CD2 gene dominant control region. Int J Cancer 1993; 53: 1023–1030.

    Article  CAS  Google Scholar 

  12. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P . Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 1986; 45: 485–495.

    Article  CAS  Google Scholar 

  13. Morse HC 3rd, Hartley JW, Fredrickson TN, Yetter RA, Majumdar C, Cleveland JL et al. Recombinant murine retroviruses containing avian v-myc induce a wide spectrum of neoplasms in newborn mice. Proc Natl Acad Sci USA 1986; 83: 6868–6872.

    Article  CAS  Google Scholar 

  14. Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F et al. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med 2011; 208: 1595–1603.

    Article  CAS  Google Scholar 

  15. Smith DP, Bath ML, Metcalf D, Harris AW, Cory S . MYC levels govern hematopoietic tumor type and latency in transgenic mice. Blood 2006; 108: 653–661.

    Article  CAS  Google Scholar 

  16. Roderick JE, Tesell J, Shultz LD, Brehm MA, Greiner DL, Harris MH et al. c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 2014; 123: 1040–1050.

    Article  CAS  Google Scholar 

  17. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299: 887–890.

    Article  CAS  Google Scholar 

  18. Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT . Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2005; 102: 6068–6073.

    Article  CAS  Google Scholar 

  19. Knoepfler PS . Myc goes global: new tricks for an old oncogene. Cancer Res 2007; 67: 5061–5063.

    Article  CAS  Google Scholar 

  20. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  Google Scholar 

  21. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB et al. c-Myc regulates transcriptional pause release. Cell 2010; 141: 432–445.

    Article  CAS  Google Scholar 

  22. Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV . MYC and metabolism on the path to cancer. Semin Cell Dev Biol 2015; 43: 11–21.

    Article  CAS  Google Scholar 

  23. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M et al. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000; 275: 21797–21800.

    Article  CAS  Google Scholar 

  24. Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O'Donnell KA et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol 2004; 24: 5923–5936.

    Article  CAS  Google Scholar 

  25. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107: 2037–2042.

    Article  CAS  Google Scholar 

  26. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 2008; 105: 18782–18787.

    Article  CAS  Google Scholar 

  27. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458: 762–765.

    Article  CAS  Google Scholar 

  28. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 2012; 15: 110–121.

    Article  CAS  Google Scholar 

  29. Yuneva MO, Fan TW, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012; 15: 157–170.

    Article  CAS  Google Scholar 

  30. Murphy TA, Dang CV, Young JD . Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 2013; 15: 206–217.

    Article  CAS  Google Scholar 

  31. Herranz D, Ambesi-Impiombato A, Sudderth J, Sanchez-Martin M, Belver L, Tosello V et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med 2015; 21: 1182–1189.

    Article  CAS  Google Scholar 

  32. Sheu KF, Blass JP . The alpha-ketoglutarate dehydrogenase complex. Ann NY Acad Sci 1999; 893: 61–78.

    Article  CAS  Google Scholar 

  33. Westerfield M . The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Brachydanio rerio). University of Oregon Press: Eugene, OR, USA, 1994.

    Google Scholar 

  34. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N . Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 2004; 101: 12792–12797.

    Article  CAS  Google Scholar 

  35. Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, Neuberg DS et al. Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol 2007; 138: 169–175.

    Article  CAS  Google Scholar 

  36. Halloran MC, Sato-Maeda M, Warren JT, Su F, Lele Z, Krone PH et al. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 2000; 127: 1953–1960.

    CAS  PubMed  Google Scholar 

  37. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI . Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4: 1238–1246.

    Article  CAS  Google Scholar 

  38. Macdonald R . Zebrafish immunohistochemistry. Methods Mol Biol 1999; 127: 77–88.

    Article  CAS  Google Scholar 

  39. Sanda T, Tyner JW, Gutierrez A, Ngo VN, Glover J, Chang BH et al. TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov 2013; 3: 564–577.

    Article  CAS  Google Scholar 

  40. Yuan M, Breitkopf SB, Yang X, Asara JM . A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 2012; 7: 872–881.

    Article  CAS  Google Scholar 

  41. Blackburn JS, Liu S, Raiser DM, Martinez SA, Feng H, Meeker ND et al. Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia 2012; 26: 2069–2078.

    Article  CAS  Google Scholar 

  42. Nilsson JA, Keller UB, Baudino TA, Yang C, Norton S, Old JA et al. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation. Cancer Cell 2005; 7: 433–444.

    Article  CAS  Google Scholar 

  43. Guo Y, Cleveland JL, O'Brien TG . Haploinsufficiency for odc modifies mouse skin tumor susceptibility. Cancer Res 2005; 65: 1146–1149.

    Article  CAS  Google Scholar 

  44. Nikiforov MA, Chandriani S, O'Connell B, Petrenko O, Kotenko I, Beavis A et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 2002; 22: 5793–5800.

    Article  CAS  Google Scholar 

  45. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  Google Scholar 

  46. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647–650.

    Article  CAS  Google Scholar 

  47. Heart E, Yaney GC, Corkey RF, Schultz V, Luc E, Liu L et al. Ca2+, NAD(P)H and membrane potential changes in pancreatic beta-cells by methyl succinate: comparison with glucose. Biochem J 2007; 403: 197–205.

    Article  CAS  Google Scholar 

  48. Ward PS, Thompson CB . Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 2012; 4: a006783.

    Article  Google Scholar 

  49. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  50. Daye D, Wellen KE . Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 2012; 23: 362–369.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Gilbert and Joseph Hirsch for editorial assistance; Nicholas Nagykery and Lu Zhang for technical assistance; Bethany M. Moore, Trevor Grant, Dr Nicolay Brandon, Dr Adam Lerner, Dr Enxuan Jing, Dr Arthur JL Cooper, Dr Gromoslaw Smolen and Dr Keith Tornheim for helpful discussions and critical review of the manuscript; and Julia Etchin for reagents. We also thank Gregory Molind, John Lyons and Derek Walsh for zebrafish husbandry. HF was supported by a K99CA134743/R00CA134743 award (National Institute of Health), a Karin Grunebaum faculty fellowship from the Karin Grunebaum Cancer Foundation, a Ralph Edwards Career Development Professorship from Boston University, a St Baldrick Scholar Award from the St Baldrick's Foundation, an Institutional grant (IRG –72-001-36-IRG) from the American Cancer Society and a Young Investigator grant from the Leukemia Research Foundation. ATL receives funding support from a 1R01 CA176746 grant (National Institute of Health). IH and DL acknowledge support through a NHLB1 T32 HL007501 training grant. HLP receives support from a NSFC 81200368 grant. The content of this research is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions

NMA and HF designed and performed experiments and wrote the manuscript; DL, FJL, HLP, MA, EG, TC, DJH, IH, YS and ML performed experiments; MRS, TS, AA, TTD and AS provided intellectual input to the project and experiments; JER and MAK provided patient samples from murine xenografts. DSN checked statistical analysis and provided intellectual input; ATL and HF supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Feng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, N., Li, D., Peng, H. et al. The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis. Leukemia 30, 1365–1374 (2016). https://doi.org/10.1038/leu.2016.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.26

This article is cited by

Search

Quick links