Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in Hodgkin lymphoma

Abstract

The interaction between vascular endothelial cells (ECs) and cancer cells is of vital importance to understand tumor dissemination. A paradigmatic cancer to study cell–cell interactions is classical Hodgkin Lymphoma (cHL) owing to its complex microenvironment. The role of the interplay between cHL and ECs remains poorly understood. Here we identify canonical WNT pathway activity as important for the mutual interactions between cHL cells and ECs. We demonstrate that local canonical WNT signaling activates cHL cell chemotaxis toward ECs, adhesion to EC layers and cell invasion using not only the Wnt-inhibitor Dickkopf, tankyrases and casein kinase 1 inhibitors but also knockdown of the lymphocyte enhancer binding-factor 1 (LEF-1) and β-catenin in cHL cells. Furthermore, LEF-1- and β-catenin-regulated cHL secretome promoted EC migration, sprouting and vascular tube formation involving vascular endothelial growth factor A (VEGF-A). Importantly, high VEGFA expression is associated with a worse overall survival of cHL patients. These findings strongly support the concept that WNTs might function as a regulator of lymphoma dissemination by affecting cHL cell chemotaxis and promoting EC behavior and thus angiogenesis through paracrine interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Aldinucci D, Gloghini A, Pinto A, De Filippi R, Carbone A . The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J Pathol 2010; 221: 248–263.

    Article  CAS  Google Scholar 

  3. Liu Y, Sattarzadeh A, Diepstra A, Visser L, van den Berg A . The microenvironment in classical Hodgkin lymphoma: an actively shaped and essential tumor component. Semin Cancer Biol 2014; 24: 15–22.

    Article  CAS  Google Scholar 

  4. Pals ST, de Gorter DJJ, Spaargaren M . Lymphoma dissemination: the other face of lymphocyte homing. Blood 2007; 110: 3102–3111.

    Article  CAS  Google Scholar 

  5. Baekkevold ES, Yamanaka T, Palframan RT, Carlsen HS, Reinholt FP, von Andrian UH et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 2001; 193: 1105–1112.

    Article  CAS  Google Scholar 

  6. Till KJ, Lin K, Zuzel M, Cawley JC . The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 2002; 99: 2977–2984.

    Article  CAS  Google Scholar 

  7. Höpken UE, Foss H-D, Meyer D, Hinz M, Leder K, Stein H et al. Up-regulation of the chemokine receptor CCR7 in classical but not in lymphocyte-predominant Hodgkin disease correlates with distinct dissemination of neoplastic cells in lymphoid organs. Blood 2002; 99: 1109–1116.

    Article  Google Scholar 

  8. Celegato M, Borghese C, Casagrande N, Mongiat M, Kahle XU, Paulitti A et al. Preclinical activity of the repurposed drug auranofin in classical Hodgkin lymphoma. Blood 2015; 126: 1394–1397.

    Article  CAS  Google Scholar 

  9. Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Improta S et al. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin’s disease cell line. Blood 1996; 88: 3299–3305.

    CAS  PubMed  Google Scholar 

  10. Molin D, Fischer M, Xiang Z, Larsson U, Harvima I, Venge P et al. Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin’s disease. Br J Haematol 2001; 114: 616–623.

    Article  CAS  Google Scholar 

  11. Schreck S, Friebel D, Buettner M, Distel L, Grabenbauer G, Young LS et al. Prognostic impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. Hematol Oncol 2009; 27: 31–39.

    Article  CAS  Google Scholar 

  12. Zhang J, Ye J, Ma D, Liu N, Wu H, Yu S et al. Cross-talk between leukemic and endothelial cells promotes angiogenesis by VEGF activation of the Notch/Dll4 pathway. Carcinogenesis 2013; 34: 667–677.

    Article  CAS  Google Scholar 

  13. Nagaraj SRM, Shilpa P, Rachaiah K, Salimath BP . Crosstalk between VEGF and MTA1 signaling pathways contribute to aggressiveness of breast carcinoma. Mol Carcinog 2015; 54: 333–350.

    Article  CAS  Google Scholar 

  14. Carmeliet P, Jain RK . Molecular Mechanisms and and clinical applications of angiogenesis. Nature 2011; 473: 298–307.

    Article  CAS  Google Scholar 

  15. Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  CAS  Google Scholar 

  16. Gelebart P, Anand M, Armanious H, Peters AC, Bard JD, Amin HM et al. Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma. Blood 2008; 112: 5171–5179.

    Article  CAS  Google Scholar 

  17. Gutierrez A, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM et al. LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood 2010; 116: 2975–2983.

    Article  CAS  Google Scholar 

  18. Wang W, Ji P, Steffen B, Metzger R, Schneider PM, Halfter H et al. Alterations of lymphoid enhancer factor-1 isoform expression in solid tumors and acute leukemias. Acta Biochim Biophys Sin (Shanghai) 2005; 37: 173–180.

    Article  CAS  Google Scholar 

  19. Murakami T, Toda S, Fujimoto M, Ohtsuki M, Byers HR, Etoh T et al. Constitutive activation of Wnt/beta-catenin signaling pathway in migration-active melanoma cells: role of LEF-1 in melanoma with increased metastatic potential. Biochem Biophys Res Commun 2001; 288: 8–15.

    Article  CAS  Google Scholar 

  20. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.

    Article  CAS  Google Scholar 

  21. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 2004; 116: 883–895.

    Article  CAS  Google Scholar 

  22. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UFO et al. Mice null for frizzled4 (Fzd4−/−) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod 2005; 73: 1135–1146.

    Article  CAS  Google Scholar 

  23. Luhmann UFO, Meunier D, Shi W, Lüttges A, Pfarrer C, Fundele R et al. Fetal loss in homozygous mutant Norrie disease mice: a new role of Norrin in reproduction. Genesis 2005; 42: 253–262.

    Article  CAS  Google Scholar 

  24. Zhang X, Gaspard JP, Chung DC . Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001; 61: 6050–6054.

    CAS  PubMed  Google Scholar 

  25. Qi J, Yu Y, Akilli Öztürk Ö, Holland JD, Besser D, Fritzmann J et al. New Wnt/β-catenin target genes promote experimental metastasis and migration of colorectal cancer cells through different signals. Gut 2015, 1–12.

  26. Gallagher SJ, Rambow F, Kumasaka M, Champeval D, Bellacosa A, Delmas V et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene 2013; 32: 2230–2238.

    Article  CAS  Google Scholar 

  27. Nguyen DX, Chiang AC, XH-FF Zhang, Kim JY, Kris MG, Ladanyi M et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 2009; 138: 51–62.

    Article  CAS  Google Scholar 

  28. Vockerodt M, Tesch H, Kube D . Epstein-Barr virus latent membrane protein-1 activates CD25 expression in lymphoma cells involving the NFkappaB pathway. Genes Immun 2001; 2: 433–441.

    Article  CAS  Google Scholar 

  29. Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood 2001; 98: 762–771.

    Article  CAS  Google Scholar 

  30. Zepeda-Moreno A, Taubert I, Hellwig I, Hoang V, Pietsch L, Lakshmanan VK et al. Innovative method for quantification of cell-cell adhesion in 96-well plates. Cell Adh Migr 2014; 5: 215–219.

    Article  Google Scholar 

  31. Klingenberg M, Becker J, Eberth S, Kube D, Wilting J . The NADPH oxidase inhibitor imipramine-blue in the treatment of Burkitt lymphoma. Mol Cancer Ther 2014; 13: 833–841.

    Article  CAS  Google Scholar 

  32. Linke F, Zaunig S, Nietert MM, von Bonin F, Lutz S, Dullin C et al. WNT5A: a motility-promoting factor in Hodgkin lymphoma. Oncogene 2016; e-pub ahead of print 6 June 2016 doi:10.1038/onc.2016.183.

    Article  Google Scholar 

  33. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A . Reverse engineering of regulatory networks in human B cells. Nat Genet 2005; 37: 382–390.

    Article  CAS  Google Scholar 

  34. Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 2008; 205: 2251–2268.

    Article  CAS  Google Scholar 

  35. Erdfelder F, Hertweck M, Filipovich A, Uhrmacher S, Kreuzer K-A . High lymphoid enhancer-binding factor-1 expression is associated with disease progression and poor prognosis in chronic lymphocytic leukemia. Hematol Rep 2010; 2: e3.

    Article  Google Scholar 

  36. Walther N, Ulrich A, Vockerodt M, von Bonin F, Klapper W, Meyer K et al. Aberrant lymphocyte enhancer-binding factor 1 expression is characteristic for sporadic Burkitt’s lymphoma. Am J Pathol 2013; 182: 1092–1098.

    Article  CAS  Google Scholar 

  37. Senger DR, Van de Water L, Brown LF, Nagy JA, Yeo KT, Yeo TK et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 1993; 12: 303–324.

    Article  CAS  Google Scholar 

  38. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al. Tumor-associated makrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 2010; 362: 875–885.

    Article  CAS  Google Scholar 

  39. Steidl C, Connors JM, Gascoyne RD . Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J Clin Oncol 2011; 29: 1812–1826.

    Article  CAS  Google Scholar 

  40. Afonso P V, McCann CP, Kapnick SM, Parent CA . Discoidin domain receptor 2 regulates neutrophil chemotaxis in 3D collagen matrices. Blood 2013; 121: 1644–1650.

    Article  CAS  Google Scholar 

  41. Cader FZ, Vockerodt M, Bose S, Nagy E, Brundler M-A, Kearns P et al. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 2013; 122: 4237–4245.

    Article  CAS  Google Scholar 

  42. Stauder R, Hamader S, Fasching B, Kemmler G, Thaler J, Huber H . Adhesion to high endothelial venules: a model for dissemination mechanisms in non-Hodgkin’s lymphoma. Blood 1993; 82: 262–267.

    CAS  PubMed  Google Scholar 

  43. Bargatze RF, Wu NW, Weissman IL, Butcher EC . High endothelial venule binding as a predictor of the dissmenination of passaged murine lymphomas. J Exp Med 1987; 166: 1125–1131.

    Article  CAS  Google Scholar 

  44. Fhu CW, Graham AM, Yap CT, Al-Salam S, Castella A, Chong SM et al. Reed-Sternberg cell-derived lymphotoxin-α activates endothelial cells to enhance T-cell recruitment in classical Hodgkin lymphoma. Blood 2014; 124: 2973–2982.

    Article  CAS  Google Scholar 

  45. Doussis-Anagnostopoulou IA, Talks KL, Turley H, Debnam P, Tan DC, Mariatos G et al. Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin-Reed-Sternberg cells in Hodgkin’s disease. J Pathol 2002; 197: 677–683.

    Article  CAS  Google Scholar 

  46. Mizuno H, Nakayama T, Miyata Y, Saito S, Nishiwaki S, Nakao N et al. Mast cells promote the growth of Hodgkin’s lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia 2012; 26: 2269–2276.

    Article  CAS  Google Scholar 

  47. Giles FJ, Vose JM, Do K-A, Johnson MM, Manshouri T, Bociek G et al. Clinical relevance of circulating angiogenic factors in patients with non-Hodgkin’s lymphoma or Hodgkin’s lymphoma. Leuk Res 2004; 28: 595–604.

    Article  CAS  Google Scholar 

  48. Dimtsas GS, Georgiadi EC, Karakitsos P, Vassilakopoulos TP, Thymara I, Korkolopoulou P et al. Prognostic significance of immunohistochemical expression of the angiogenic molecules vascular endothelial growth factor-A, vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2 in patients with classical Hodgkin. Leuk Lymphoma 2014; 55: 558–564.

    Article  CAS  Google Scholar 

  49. Rueda A, Olmos D, Vicioso L, Quero C, Gallego E, Pajares-Hachero BI et al. Role of vascular endothelial growth factor C in classical Hodgkin lymphoma. Leuk Lymphoma 2015; 56: 1286–1294.

    Article  CAS  Google Scholar 

  50. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J . Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 2014; 5: 1–13.

    Article  Google Scholar 

  51. Marinaccio C, Nico B, Maiorano E, Specchia G, Ribatti D . Insights in Hodgkin lymphoma angiogenesis. Leuk Res 2014; 38: 857–861.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs S Schwoch for her technical assistance in the histological analysis of the CAM tumors and Mrs G Lutze for some advice in the vascular sprouting assay. This work was supported by grants of the Deutsche Forschungsgemeinschaft Ku 954/12-1 within the Forschergruppe FOR942. CEITEC—the Central European Institute of Technology is supported by CEITEC 2020 (LQ1601) project with financial contribution made by the Ministry of Education, Youths and Sports of the Czech Republic within special support paid from the National Programme for Sustainability II funds. VB and PJ are supported by the grant from the AZV CR, Ministry of Health, Czech Republic, NR 15-29793A. MMN is supported by the BMBF e:Bio Project MetastaSys (Ref.: 0316173) and TB/DK by BMBF e:Med Project MMML-Demonstrators (Ref.: 031A428B). SL is supported by the German Research Foundation grant SFB1002 TPC02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kube.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

FL, MH, SZ, and FvB did most of the experiments with AA, CD, SL, MMN and JW contributing to specific experiments, such as flow cytometry, Micro-CT analysis of the chick chorio-allantoic assay, time-lapse experiments, cell track analysis and data interpretation as well as chick chorio-allantoic model characterization. MS and WK performed IHC analysis. PJ and VB analyzed microarray data from Oncomine. MK and LT performed NMR studies and PO performed the corresponding cluster analysis. VB, JW, TB, FA and LT were involved in manuscript writing and final approval. FL and DK designed the research, analyzed and interpreted data and wrote the finally approved manuscript.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linke, F., Harenberg, M., Nietert, M. et al. Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in Hodgkin lymphoma. Leukemia 31, 361–372 (2017). https://doi.org/10.1038/leu.2016.232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.232

This article is cited by

Search

Quick links