Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies

Abstract

Sphingolipids, such as ceramide, sphingosine and sphingosine 1-phosphate (S1P) are bioactive molecules that have important functions in a variety of cellular processes, which include proliferation, survival, differentiation and cellular responses to stress. Sphingolipids have a major impact on the determination of cell fate by contributing to either cell survival or death. Although ceramide and sphingosine are usually considered to induce cell death, S1P promotes survival of cells. Sphingosine kinases (SPHKs) are the enzymes that catalyze the conversion of sphingosine to S1P. There are two isoforms, SPHK1 and SPHK2, which are encoded by different genes. SPHK1 has recently been implicated in contributing to cell transformation, tumor angiogenesis and metastatic spread, as well as cancer cell multidrug-resistance. More recent findings suggest that SPHK2 also has a role in cancer progression. This review is an overview of our understanding of the role of SPHKs and S1P in hematopoietic malignancies and provides information on the current status of SPHK inhibitors with respect to their therapeutic potential in the treatment of hematological cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jabbour E, Kantarjian H, Cortes J . Use of second- and third-generation tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: an evolving treatment paradigm. Clin Lymphoma Myeloma Leuk 2015; 15: 323–334.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pyne S, Chapman J, Steele L, Pyne NJ . Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur J Biochem 1996; 237: 819–826.

    Article  CAS  PubMed  Google Scholar 

  3. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 1996; 381: 800–803.

    Article  CAS  PubMed  Google Scholar 

  4. Pyne NJ, Pyne S . Sphingosine 1-phosphate and cancer. Nat Rev Cancer 2010; 10: 489–503.

    Article  CAS  PubMed  Google Scholar 

  5. Wallington-Beddoe CT, Bradstock KF, Bendall LJ . Oncogenic properties of sphingosine kinases in haematological malignancies. Br J Haematol 2013; 161: 623–638.

    Article  CAS  PubMed  Google Scholar 

  6. Pyne S, Adams DR, Pyne NJ . Sphingosine 1-phosphate and sphingosine kinases in health and disease: recent advances. Prog Lipid Res 2016; 62: 93–106.

    Article  CAS  PubMed  Google Scholar 

  7. Nishi T, Kobayashi N, Hisano Y, Kawahara A, Yamaguchi A . Molecular and physiological functions of sphingosine 1-phosphate transporters. Biochim Biophys Acta 2014; 1841: 759–765.

    Article  CAS  PubMed  Google Scholar 

  8. Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM . The role and clinical applications of bioactive lysolipids in ovarian cancer. J Soc Gynecol Investig 2001; 8: 1–13.

    Article  PubMed  Google Scholar 

  9. Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys Jr EC, LaPolla JP et al. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 1185–1191.

    CAS  PubMed  Google Scholar 

  10. Long JS, Fujiwara Y, Edwards J, Tannahill CL, Tigyi G, Pyne S et al. Sphingosine 1-phosphate receptor 4 uses HER2 (ERBB2) to regulate extracellular signal regulated kinase-1/2 in MDA-MB-453 breast cancer cells. J Biol Chem 2010; 285: 35957–35966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shida D, Fang X, Kordula T, Takabe K, Lepine S, Alvarez SE et al. Cross-talk between LPA1 and epidermal growth factor receptors mediates up-regulation of sphingosine kinase 1 to promote gastric cancer cell motility and invasion. Cancer Res 2008; 68: 6569–6577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pyne NJ, Pyne S . Receptor tyrosine kinase-G-protein-coupled receptor signalling platforms: out of the shadow? Trends Pharmacol Sci 2011; 32: 443–450.

    Article  CAS  PubMed  Google Scholar 

  13. Long JS, Edwards J, Watson C, Tovey S, Mair KM, Schiff R et al. Sphingosine kinase 1 induces tolerance to human epidermal growth factor receptor 2 and prevents formation of a migratory phenotype in response to sphingosine 1-phosphate in estrogen receptor-positive breast cancer cells. Mol Cell Biol 2010; 30: 3827–3841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watson C, Long JS, Orange C, Tannahill CL, Mallon E, McGlynn LM et al. High expression of sphingosine 1-phosphate receptors, S1P1 and S1P3, sphingosine kinase 1, and extracellular signal-regulated kinase-1/2 is associated with development of tamoxifen resistance in estrogen receptor-positive breast cancer patients. Am J Pathol 2010; 177: 2205–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pitson SM . Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci 2011; 36: 97–107.

    Article  CAS  PubMed  Google Scholar 

  16. Neubauer HA, Pitson SM . Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280: 5317–5336.

    Article  CAS  PubMed  Google Scholar 

  17. Loveridge C, Tonelli F, Leclercq T, Lim KG, Long JS, Berdyshev E et al. The sphingosine kinase 1 inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole induces proteasomal degradation of sphingosine kinase 1 in mammalian cells. J Biol Chem 2010; 285: 38841–38852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pitson SM, Moretti PA, Zebol JR, Xia P, Gamble JR, Vadas MA et al. Expression of a catalytically inactive sphingosine kinase mutant blocks agonist-induced sphingosine kinase activation. A dominant-negative sphingosine kinase. J Biol Chem 2000; 275: 33945–33950.

    Article  CAS  PubMed  Google Scholar 

  19. Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J 2003; 22: 5491–5500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jarman KE, Moretti PA, Zebol JR, Pitson SM . Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J Biol Chem 2010; 285: 483–492.

    Article  CAS  PubMed  Google Scholar 

  21. Barr RK, Lynn HE, Moretti PA, Khew-Goodall Y, Pitson SM . Deactivation of sphingosine kinase 1 by protein phosphatase 2 A. J Biol Chem 2008; 283: 34994–35002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takabe K, Paugh SW, Milstien S, Spiegel S . "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60: 181–195.

    Article  CAS  PubMed  Google Scholar 

  23. Vadas M, Xia P, McCaughan G, Gamble J . The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta 2008; 1781: 442–447.

    Article  CAS  PubMed  Google Scholar 

  24. Sobue S, Nemoto S, Murakami M, Ito H, Kimura A, Gao S et al. Implications of sphingosine kinase 1 expression level for the cellular sphingolipid rheostat: relevance as a marker for daunorubicin sensitivity of leukemia cells. Int J Hematol 2008; 87: 266–275.

    Article  CAS  PubMed  Google Scholar 

  25. Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M et al. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 2008; 49: 948–954.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Wang Y, Wan Z, Liu S, Cao Y, Zeng Z . Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS One 2014; 9: e90362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Paugh SW, Paugh BS, Rahmani M, Kapitonov D, Almenara JA, Kordula T et al. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood 2008; 112: 1382–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Datta A, Loo SY, Huang B, Wong L, Tan SS, Tan TZ et al. SPHK1 regulates proliferation and survival responses in triple-negative breast cancer. Oncotarget 2014; 5: 5920–5933.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pitman MR, Powell JA, Coolen C, Moretti PA, Zebol JR, Pham DH et al. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget 2015; 6: 7065–7083.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee JW, Ryu JY, Yoon G, Jeon HK, Cho YJ, Choi JJ et al. Sphingosine kinase 1 as a potential therapeutic target in epithelial ovarian cancer. Int J Cancer 2015; 137: 221–229.

    Article  CAS  PubMed  Google Scholar 

  31. Pchejetski D, Doumerc N, Golzio M, Naymark M, Teissie J, Kohama T et al. Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol Cancer Ther 2008; 7: 1836–1845.

    Article  CAS  PubMed  Google Scholar 

  32. Sauer L, Nunes J, Salunkhe V, Skalska L, Kohama T, Cuvillier O et al. Sphingosine kinase 1 inhibition sensitizes hormone-resistant prostate cancer to docetaxel. Int J Cancer 2009; 125: 2728–2736.

    Article  CAS  PubMed  Google Scholar 

  33. Pchejetski D, Bohler T, Brizuela L, Sauer L, Doumerc N, Golzio M et al. FTY720 (fingolimod) sensitizes prostate cancer cells to radiotherapy by inhibition of sphingosine kinase-1. Cancer Res 2010; 70: 8651–8661.

    Article  CAS  PubMed  Google Scholar 

  34. Guillermet-Guibert J, Davenne L, Pchejetski D, Saint-Laurent N, Brizuela L, Guilbeau-Frugier C et al. Targeting the sphingolipid metabolism to defeat pancreatic cancer cell resistance to the chemotherapeutic gemcitabine drug. Mol Cancer Ther 2009; 8: 809–820.

    Article  CAS  PubMed  Google Scholar 

  35. Sukocheva O, Wang L, Verrier E, Vadas MA, Xia P . Restoring endocrine response in breast cancer cells by inhibition of the sphingosine kinase-1 signaling pathway. Endocrinology 2009; 150: 4484–4492.

    Article  CAS  PubMed  Google Scholar 

  36. Hait NC, Bellamy A, Milstien S, Kordula T, Spiegel S . Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem 2007; 282: 12058–12065.

    Article  CAS  PubMed  Google Scholar 

  37. Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009; 325: 1254–1257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding G, Sonoda H, Yu H, Kajimoto T, Goparaju SK, Jahangeer S et al. Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J Biol Chem 2007; 282: 27493–27502.

    Article  CAS  PubMed  Google Scholar 

  39. Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem 2005; 280: 37118–37129.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Toman RE, Goparaju SK, Maceyka M, Nava VE, Sankala H et al. Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis. J Biol Chem 2003; 278: 40330–40336.

    Article  CAS  PubMed  Google Scholar 

  41. Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ et al. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 2012; 148: 988–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Brocklyn JR, Jackson CA, Pearl DK, Kotur MS, Snyder PJ, Prior TW . Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J Neuropathol Exp Neurol 2005; 64: 695–705.

    Article  CAS  PubMed  Google Scholar 

  43. Sankala HM, Hait NC, Paugh SW, Shida D, Lepine S, Elmore LW et al. Involvement of sphingosine kinase 2 in p53-independent induction of p21 by the chemotherapeutic drug doxorubicin. Cancer Res 2007; 67: 10466–10474.

    Article  CAS  PubMed  Google Scholar 

  44. Nemoto S, Nakamura M, Osawa Y, Kono S, Itoh Y, Okano Y et al. Sphingosine kinase isoforms regulate oxaliplatin sensitivity of human colon cancer cells through ceramide accumulation and Akt activation. J Biol Chem 2009; 284: 10422–10432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schnitzer SE, Weigert A, Zhou J, Brune B . Hypoxia enhances sphingosine kinase 2 activity and provokes sphingosine-1-phosphate-mediated chemoresistance in A549 lung cancer cells. Mol Cancer Res 2009; 7: 393–401.

    Article  CAS  PubMed  Google Scholar 

  46. Weigert A, Schiffmann S, Sekar D, Ley S, Menrad H, Werno C et al. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int J Cancer 2009; 125: 2114–2121.

    Article  CAS  PubMed  Google Scholar 

  47. Beljanski V, Knaak C, Smith CD . A novel sphingosine kinase inhibitor induces autophagy in tumor cells. J Pharmacol Exp Ther 2010; 333: 454–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V et al. Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 2010; 333: 129–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beljanski V, Lewis CS, Smith CD . Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther 2011; 11: 524–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McNaughton M, Pitman M, Pitson SM, Pyne NJ, Pyne S . Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget 2016; 7: 16663–16675.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Venant H, Rahmaniyan M, Jones EE, Lu P, Lilly MB, Garrett-Mayer E et al. The sphingosine kinase 2 inhibitor ABC294640 reduces the growth of prostate cancer cells and results in accumulation of dihydroceramides in vitro and in vivo. Mol Cancer Ther 2015; 14: 2744–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW et al. Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J 2012; 444: 79–88.

    Article  CAS  PubMed  Google Scholar 

  53. Xiang Y, Hirth B, Kane Jr JL, Liao J, Noson KD, Yee C et al. Discovery of novel sphingosine kinase-1 inhibitors. Part 2. Bioorg Med Chem Lett 2010; 20: 4550–4554.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Berka V, Song A, Sun K, Wang W, Zhang W et al. Elevated sphingosine-1-phosphate promotes sickling and sickle cell disease progression. J Clin Invest 2014; 124: 2750–2761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang F, Xia Y, Yan W, Zhang H, Zhou F, Zhao S et al. Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 310: H250–H261.

    Article  PubMed  Google Scholar 

  56. Lim KG, Sun C, Bittman R, Pyne NJ, Pyne S . (R)-FTY720 methyl ether is a specific sphingosine kinase 2 inhibitor: effect on sphingosine kinase 2 expression in HEK 293 cells and actin rearrangement and survival of MCF-7 breast cancer cells. Cell Signal 2011; 23: 1590–1595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Evangelisti C, Teti G, Chiarini F, Falconi M, Melchionda F, Pession A et al. Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics. Oncotarget 2014; 5: 7886–7901.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang Z, Min X, Xiao SH, Johnstone S, Romanow W, Meininger D et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 2013; 21: 798–809.

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Knapp S, Pyne NJ, Pyne S, Elkins JM . Crystal structure of sphingosine kinase 1 with PF-543. ACS Med Chem Lett 2014; 5: 1329–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gustin DJ, Li Y, Brown ML, Min X, Schmitt MJ, Wanska M et al. Structure guided design of a series of sphingosine kinase (SphK) inhibitors. Bioorg Med Chem Lett 2013; 23: 4608–4616.

    Article  CAS  PubMed  Google Scholar 

  61. French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL et al. Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res 2003; 63: 5962–5969.

    CAS  PubMed  Google Scholar 

  62. Santos WL, Lynch KR . Drugging sphingosine kinases. ACS Chem Biol 2015; 10: 225–233.

    Article  CAS  PubMed  Google Scholar 

  63. Rex K, Jeffries S, Brown ML, Carlson T, Coxon A, Fajardo F et al. Sphingosine kinase activity is not required for tumor cell viability. PLos One 2013; 8: e68328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. French KJ, Upson JJ, Keller SN, Zhuang Y, Yun JK, Smith CD . Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther 2006; 318: 596–603.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 2008; 105: 16308–16313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ratajczak MZ, Kim CH, Abdel-Latif A, Schneider G, Kucia M, Morris AJ et al. A novel perspective on stem cell homing and mobilization: review on bioactive lipids as potent chemoattractants and cationic peptides as underappreciated modulators of responsiveness to SDF-1 gradients. Leukemia 2012; 26: 63–72.

    Article  CAS  PubMed  Google Scholar 

  68. Balabanov S, Braig M, Brummendorf TH . Current aspects in resistance against tyrosine kinase inhibitors in chronic myelogenous leukemia. Drug Discov Today Technol 2014; 11: 89–99.

    Article  PubMed  Google Scholar 

  69. Modugno M . New resistance mechanisms for small molecule kinase inhibitors of Abl kinase. Drug Discov Today Technol 2014; 11: 5–10.

    Article  PubMed  Google Scholar 

  70. Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM et al. Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 2007; 282: 10922–10934.

    Article  CAS  PubMed  Google Scholar 

  71. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    Article  CAS  PubMed  Google Scholar 

  72. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 2000; 95: 1758–1766.

    Article  CAS  PubMed  Google Scholar 

  73. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A et al. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 2005; 65: 8912–8919.

    Article  CAS  PubMed  Google Scholar 

  74. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  75. Marfe G, Di Stefano C, Gambacurta A, Ottone T, Martini V, Abruzzese E et al. Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Exp Hematol 2011; 39: e656.

    Article  CAS  Google Scholar 

  76. Burchert A, Wang Y, Cai D, von Bubnoff N, Paschka P, Muller-Brusselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  77. Quentmeier H, Eberth S, Romani J, Zaborski M, Drexler HG . BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance. J Hematol Oncol 2011; 4: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Airiau K, Mahon FX, Josselin M, Jeanneteau M, Belloc F . PI3K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor. Cell Death Dis 2013; 4: e827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding J, Romani J, Zaborski M, MacLeod RA, Nagel S, Drexler HG et al. Inhibition of PI3K/mTOR overcomes nilotinib resistance in BCR-ABL1 positive leukemia cells through translational down-regulation of MDM2. PLoS One 2013; 8: e83510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Okabe S, Tauchi T, Tanaka Y, Kitahara T, Kimura S, Maekawa T et al. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol Ther 2014; 15: 207–215.

    Article  CAS  PubMed  Google Scholar 

  81. Li QF, Huang WR, Duan HF, Wang H, Wu CT, Wang LS . Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene 2007; 26: 7904–7908.

    Article  CAS  PubMed  Google Scholar 

  82. Salas A, Ponnusamy S, Senkal CE, Meyers-Needham M, Selvam SP, Saddoughi SA et al. Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2 A. Blood 2011; 117: 5941–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ricci C, Onida F, Servida F, Radaelli F, Saporiti G, Todoerti K et al. in vitro anti-leukaemia activity of sphingosine kinase inhibitor. Br J Haematol 2009; 144: 350–357.

    Article  CAS  PubMed  Google Scholar 

  84. Bonhoure E, Lauret A, Barnes DJ, Martin C, Malavaud B, Kohama T et al. Sphingosine kinase-1 is a downstream regulator of imatinib-induced apoptosis in chronic myeloid leukemia cells. Leukemia 2008; 22: 971–979.

    Article  CAS  PubMed  Google Scholar 

  85. Li QF, Yan J, Zhang K, Yang YF, Xiao FJ, Wu CT et al. Bortezomib and sphingosine kinase inhibitor interact synergistically to induces apoptosis in BCR/ABl+ cells sensitive and resistant to STI571 through down-regulation Mcl-1. Biochem Biophys Res Commun 2011; 405: 31–36.

    Article  CAS  PubMed  Google Scholar 

  86. Rajala HL, Porkka K, Maciejewski JP, Loughran Jr TP, Mustjoki S . Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann Med 2014; 46: 114–122.

    Article  CAS  PubMed  Google Scholar 

  87. LeBlanc FR, Liu X, Hengst J, Fox T, Calvert V, Petricoin EF 3rd et al. Sphingosine kinase inhibitors decrease viability and induce cell death in natural killer-large granular lymphocyte leukemia. Cancer Biol Ther 2015; 16: 1830–1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pui CH, Mullighan CG, Evans WE, Relling MV . Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012; 12: 1165–1174.

    Article  CAS  Google Scholar 

  89. Wallington-Beddoe CT, Powell JA, Tong D, Pitson SM, Bradstock KF, Bendall LJ . Sphingosine kinase 2 promotes acute lymphoblastic leukemia by enhancing MYC expression. Cancer Res 2014; 74: 2803–2815.

    Article  CAS  PubMed  Google Scholar 

  90. Cuvillier O, Levade T . Sphingosine 1-phosphate antagonizes apoptosis of human leukemia cells by inhibiting release of cytochrome c and Smac/DIABLO from mitochondria. Blood 2001; 98: 2828–2836.

    Article  CAS  PubMed  Google Scholar 

  91. Mikawa T, ME LL, Takaori-Kondo A, Inagaki N, Yokode M, Kondoh H . Dysregulated glycolysis as an oncogenic event. Cell Mol Life Sci 2015; 72: 1881–1892.

    Article  CAS  PubMed  Google Scholar 

  92. Shafer D, Grant S . Update on rational targeted therapy in AML. Blood Rev 2016; 30: 275–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shatrov VA, Lehmann V, Chouaib S . Sphingosine-1-phosphate mobilizes intracellular calcium and activates transcription factor NF-κB in U937 cells. Biochem Biophys Res Commun 1997; 234: 121–124.

    Article  CAS  PubMed  Google Scholar 

  94. Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS et al. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 2015; 352: 494–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Yang L, Weng W, Sun ZX, Fu XJ, Ma J, Zhuang WF . SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo. Biochem Biophys Res Commun 2015; 460: 903–908.

    Article  CAS  PubMed  Google Scholar 

  96. Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T et al. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 2006; 20: 95–102.

    Article  CAS  PubMed  Google Scholar 

  97. Cassaday RD, Goy A, Advani S, Chawla P, Nachankar R, Gandhi M et al. A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Clin Lymphoma Myeloma Leuk 2015; 15: 392–397.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chong EA, Ahmadi T, Aqui NA, Svoboda J, Nasta SD, Mato AR et al. Combination of lenalidomide and rituximab overcomes rituximab resistance in patients with indolent B-cell and mantle cell lymphomas. Clin Cancer Res 2015; 21: 1835–1842.

    Article  CAS  PubMed  Google Scholar 

  99. Chen Y, Wang M, Romaguera J . Current regimens and novel agents for mantle cell lymphoma. Br J Haematol 2014; 167: 3–18.

    Article  CAS  PubMed  Google Scholar 

  100. Jares P, Colomer D, Campo E . Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 2012; 122: 3416–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nishimura H, Akiyama T, Monobe Y, Matsubara K, Igarashi Y, Abe M et al. Expression of sphingosine-1-phosphate receptor 1 in mantle cell lymphoma. Mod Pathol 2010; 23: 439–449.

    Article  CAS  PubMed  Google Scholar 

  102. Bigaud M, Guerini D, Billich A, Bassilana F, Brinkmann V . Second generation S1P pathway modulators: research strategies and clinical developments. Biochim Biophys Acta 2014; 1841: 745–758.

    Article  CAS  PubMed  Google Scholar 

  103. Liu Q, Alinari L, Chen CS, Yan F, Dalton JT, Lapalombella R et al. FTY720 shows promising in vitro and in vivo preclinical activity by downmodulating Cyclin D1 and phospho-Akt in mantle cell lymphoma. Clin Cancer Res 2010; 16: 3182–3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tonelli F, Lim KG, Loveridge C, Long J, Pitson SM, Tigyi G et al. FTY720 and (S)-FTY720 vinylphosphonate inhibit sphingosine kinase 1 and promote its proteasomal degradation in human pulmonary artery smooth muscle, breast cancer and androgen-independent prostate cancer cells. Cell Signal 2010; 22: 1536–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Middle S, Coupland SE, Taktak A, Kidgell V, Slupsky JR, Pettitt AR et al. Immunohistochemical analysis indicates that the anatomical location of B-cell non-Hodgkin's lymphoma is determined by differentially expressed chemokine receptors, sphingosine-1-phosphate receptors and integrins. Exp Hematol Oncol 2015; 4: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Pfeifer M, Zheng B, Erdmann T, Koeppen H, McCord R, Grau M et al. Anti-CD22 and anti-CD79B antibody drug conjugates are active in different molecular diffuse large B-cell lymphoma subtypes. Leukemia 2015; 29: 1578–1586.

    Article  CAS  PubMed  Google Scholar 

  108. Scuto A, Kujawski M, Kowolik C, Krymskaya L, Wang L, Weiss LM et al. STAT3 inhibition is a therapeutic strategy for ABC-like diffuse large B-cell lymphoma. Cancer Res 2011; 71: 3182–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee H, Deng J, Kujawski M, Yang C, Liu Y, Herrmann A et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 2010; 16: 1421–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Liu Y, Deng J, Wang L, Lee H, Armstrong B, Scuto A et al. S1PR1 is an effective target to block STAT3 signaling in activated B cell-like diffuse large B-cell lymphoma. Blood 2012; 120: 1458–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paik JH, Nam SJ, Kim TM, Heo DS, Kim CW, Jeon YK . Overexpression of sphingosine-1-phosphate receptor 1 and phospho-signal transducer and activator of transcription 3 is associated with poor prognosis in rituximab-treated diffuse large B-cell lymphomas. BMC Cancer 2014; 14: 911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Koresawa R, Yamazaki K, Oka D, Fujiwara H, Nishimura H, Akiyama T et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. Br J Haematol 2016; 174: 264–274.

    Article  CAS  PubMed  Google Scholar 

  113. Castillo JJ, Shum H, Lahijani M, Winer ES, Butera JN . Prognosis in primary effusion lymphoma is associated with the number of body cavities involved. Leuk Lymphoma 2012; 53: 2378–2382.

    Article  CAS  PubMed  Google Scholar 

  114. Okada S, Goto H, Yotsumoto M . Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res 2014; 3: 65–74.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T et al. Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 2014; 13: 154–164.

    Article  CAS  PubMed  Google Scholar 

  116. Shain KH, Dalton WS, Tao J . The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene 2015; 34: 4673–4682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yasui H, Hideshima T, Raje N, Roccaro AM, Shiraishi N, Kumar S et al. FTY720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res 2005; 65: 7478–7484.

    Article  CAS  PubMed  Google Scholar 

  118. Yasui H, Hideshima T, Richardson PG, Anderson KC . Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol 2006; 132: 385–397.

    CAS  PubMed  Google Scholar 

  119. Tsukamoto S, Huang Y, Kumazoe M, Lesnick C, Yamada S, Ueda N et al. Sphingosine kinase-1 protects multiple myeloma from apoptosis driven by cancer-specific inhibition of RTKs. Mol Cancer Ther 2015; 14: 2303–2312.

    Article  CAS  PubMed  Google Scholar 

  120. Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ et al. Anti-α4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 2004; 104: 2149–2154.

    Article  CAS  PubMed  Google Scholar 

  121. Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  CAS  PubMed  Google Scholar 

  122. Garcia-Bernal D, Redondo-Munoz J, Dios-Esponera A, Chevre R, Bailon E, Garayoa M et al. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving α4β1 integrin function. J Pathol 2013; 229: 36–48.

    Article  CAS  PubMed  Google Scholar 

  123. Venkata JK, An N, Stuart R, Costa LJ, Cai H, Coker W et al. Inhibition of sphingosine kinase 2 downregulates the expression of c-Myc and Mcl-1 and induces apoptosis in multiple myeloma. Blood 2014; 124: 1915–1925.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Martelli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evangelisti, C., Evangelisti, C., Buontempo, F. et al. Therapeutic potential of targeting sphingosine kinases and sphingosine 1-phosphate in hematological malignancies. Leukemia 30, 2142–2151 (2016). https://doi.org/10.1038/leu.2016.208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.208

This article is cited by

Search

Quick links