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Concurrent PI3K and NF-κB activation drives B-cell
lymphomagenesis
Leukemia (2016) 30, 2267–2270; doi:10.1038/leu.2016.204

Aberrant activation of the PI3K and NF-κB pathways occurs
frequently in human B-cell lymphomas.1,2 Recent studies sug-
gested reciprocal molecular interactions between these two
pathways in lymphomagenesis. For example, PI3K inhibition
suppresses NF-κB activity in human Burkitt’s lymphoma and
diffuse large B-cell lymphoma,3,4 while blockade of NF-κB causes
suppression of PI3K activity in primary effusion lymphoma cell
lines.5 Despite frequent alterations and molecular interactions of
these two pathways in human lymphomas, genetic activation of
anyone of these two pathways was not sufficient to initiate
lymphoma development in mice.6–8

We recently reported that mutant mice (termed miR-17 ~ 92
TG mice) with B-cell-specific transgenic expression of
miR-17 ~ 92, a cluster of six microRNAs (miRNAs) that are
frequently upregulated in human cancers,9–11 spontaneously
developed B-cell lymphomas with a high incidence.12 Subse-
quent molecular analyses showed that transgenic miR-17 ~ 92
expression led to constitutive activation of the PI3K and
canonical NF-κB pathways by suppressing the expression of
multiple negative regulators of these pathways.12 However, it
remains unclear whether functional cooperation of these two
pathways is sufficient to drive lymphoma development and,
thereby, to mediate the lymphomagenic effect of miR-17 ~ 92
overexpression.
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To directly test this, we generated B-cell-specific double
transgenic mice that concurrently activate the PI3K and NF-κB
pathways (CD19cre;p110*;IKK2ca mice, termed bPK mice;
Figure 1a). In these mice, the PI3K pathway is activated
by a p110* transgene, which encodes a constitutively active
form of P110α, the catalytic subunit of PI3K,8 while the NF-κB
pathway is activated by a IKK2ca transgene, which harbors
two serine-to-glutamate substitution mutations in the activation
loop of the kinase domain of IKK2 and constitutively activates
the canonical NF-κB pathway.6 Both p110* and IKK2ca
were knocked in at the Rosa26 locus with a loxP-flanked
Neo-STOP cassette, which contains the neomycin resistance
gene (Neo) and a transcriptional termination signal (STOP),
inserted between the Rosa26 promoter and the transgene.6,8

The CD19cre transgene drives B-cell-specific expression of the
Cre recombinase, which deletes the Neo-STOP cassette and

turns on the expression of these two transgenes and green
fluorescent protein (GFP).
We first confirmed the expression of GFP and the activation of

the PI3K and NF-κB pathways in B cells of young bPK mice. As
shown in Figure 1b, the vast majority (~85%) of bPK B cells were
GFP-positive. Consistently with previous reports,6,8 both the PI3K
and NF-κB pathways were active in these cells as indicated
by increased phospho-AKT (S473) and phospho-S6 (S235/236)
levels and IκBα degradation, respectively (Figure 1c). Similar to miR-
17~ 92 TG mice, young bPK mice showed splenomegaly, increased
splenic B-cell number and size, expanded B1 cell population
(CD19+B220intCD43+CD5+), and higher percentage of λ+ B cells
(Figures 1d–f).12 A majority of splenic B cells in young bPK mice
were CD19+CD1d+CD21+, a phenotype similar to marginal zone B
(MZB) cells in wild-type mice, recapitulating the characteristic
feature of B cells in IKK2ca single transgenic mice (Figure 1f).6
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Figure 1. Characterization of transgenic mice with concurrent activation of the PI3K and NF-κB pathways in B cells. (a) Scheme of B-cell-specific
Rosa26-StopFL-IKK2ca and Rosa26-StopFL-p110* double transgenic mice (CD19cre;p110*;IKK2ca, termed bPK mice). The endogenous Rosa26
promoter drives the expression of transgenes upon CD19cre-mediated deletion of the Neo-Stop cassette. (b) GFP expression in splenic B cells of bPK
mice. (c) Immunoblot analysis of steady-state levels of IκBα, phospho-AKT (S473) and phospho-S6 (S235/236) as readouts for NF-κB and PI3K pathway
activities, respectively. 2.5mo, 2.5-month old; 5mo, 5-month old. Left, representative immunoblots; right, bar graphs summarizing quantification
results. (d) Total cell number and B-cell number in the spleen of 8-week-old bPK mice. Centered values and error bars indicate mean and s.e.m.,
respectively. (e) Increased cell size of splenic B cells in bPK mice. (f) Expansion of B1 cells, marginal zone B-like cells, and λ+ B cells in bPK mice.
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We next monitored a large cohort of bPK and littermate
control (p110*;IKK2ca but Cre-negative) mice for lymphoma
development. As shown in Figure 2a, most of the 28 bPK
mice died within 1 year (average lifespan: 8 months), whereas
only one of the 26 littermate control mice died in the same
period. We were able to analyze 15 sick bPK mice before they
succumbed to diseases (Supplementary Table 1). These mice
exhibited severe splenomegaly and hepatic granulomas
(Figure 2b). Southern blot analysis showed that in 77% of these
mice (10 out of 13 mice) B cells underwent mono- or oligoclonal
expansion, a hallmark of lymphoma (Figure 2c; Supplementary
Table 1). Consistently, these lymphoma cells were highly
proliferative and were much bigger than B cells in littermate
control mice (Supplementary Figure 1). B cells in these sick
mice exhibited a surface phenotype of B1, MZB or both
(Figures 2d and e). We have previously shown that most of
miR-17 ~ 92-driven B-cell lymphomas were able to establish
secondary tumors in immunodeficient mice.12 We transplanted
primary B cells from seven sick bPK mice exhibiting clonal B-cell
expansion into Rag1-/- mice. Among them, primary B cells from
four sick bPK mice were able to establish secondary tumors in
the spleen or lymph nodes of Rag1-/- mice (Supplementary
Table 1). Taken together, bPK mice developed lymphomas with
a high incidence and the cell surface phenotypes of B cells in
sick bPK mice were similar to those of B-cell-specific miR-17 ~ 92
TG mice (Supplementary Table 1).12

In summary, we demonstrated that concurrent activation of the
PI3K and NF-κB pathways is sufficient to drive lymphoma
development in mice. Our previous study has shown that

transgenic miR-17 ~ 92 expression activates these two pathways
in B cells and leads to a high incidence of lymphomas.12 Therefore,
these results suggest that the PI3K and NF-κB pathways are two
major downstream pathways mediating the lymphomagenic
effect of miR-17 ~ 92 overexpression. Future investigations are
warranted to explore the possibility of concurrently targeting
these two pathways for the treatment of lymphomas driven by
elevated miR-17 ~ 92 expression.13
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Somatic PHF6 mutations in 1760 cases with various myeloid
neoplasms
Leukemia (2016) 30, 2270–2273; doi:10.1038/leu.2016.212

Next-generation sequencing has enabled us to detect driver
mutations in a sensitive manner. By whole-exome sequencing, we
previously identified a somatic mutation of the plant home-
odomain finger 6 (PHF6) gene (p.G291X) in 1 out of 29 cases with
myelodysplastic syndromes (MDS).1 Initially, germline mutations of
PHF6, located at Xq26.2, are reported to cause congenital
Börjeson–Forssman–Lehmann syndrome (BFLS) with X-linked
recessive inheritance.2 BFLS is characterized by mental deficiency,
epilepsy, hypogonadism, obesity and dysmorphic features.3

Recently, it was found that germline PHF6 mutations are also
responsible for the female cases with a congenital disorder similar
to Coffin–Siris syndrome.4 Moreover, somatic PHF6 mutations
were reported in hematological neoplasms, including T-acute
lymphocytic leukemia (38% of cases were positive for mutations)5

and acute myeloid leukemia (AML) (3%).6 According to recent
studies, somatic PHF6 mutations were identified in 3% of cases
with de novo AML7 and in ~ 3% of those with MDS.8,9 Never-
theless, pathophysiology due to PHF6 defects in myeloid
neoplasms remains to be fully elucidated.
In this study, we clarified the implications of somatic PHF6

mutations in the cases with various myeloid neoplasms (N=1760),
including the cohort of MDS and AML that we previously
reported.8,10,11 To identify somatic mutations, we applied whole-
exome sequencing to 49 cases. Subsequently, targeted sequencing
(SureSelect, Agilent, Santa Clara, CA, USA) and PCR-based pool
sequencing were performed in 1428 and 356 cases, respectively, 73 of
which were subjected to both methods (Supplementary Table 1).
Detailed methods of the sequencing were previously reported.1,8

Written consent forms were obtained from all the patients.
Genetic analysis was approved by the ethical review board in each
institution. Somatic mutations were confirmed by paired DNA from
tumor and germline samples (buccal smear or CD3-positive cells).
In case of non-paired DNA, the nonsense and frameshift mutations
were classified to be somatic, and the missense mutations
were classified as somatic if they were already reported as somatic
in the Catalogue of Somatic Mutations in Cancer database
(http://www.sanger.ac.uk/genetics/CGP/cosmic/).
In total, we identified 62 somatic mutations of PHF6 in 54 cases

(Table 1). By copy number analysis,1,8 deletions affecting the PHF6
locus were identified in five cases, while no focal amplifications of
PHF6 locus were identified. Among somatic mutations, 17 were
missense, 16 frameshift, 23 nonsense and 6 affecting splice sites.
Therefore, mutations leading to truncated transcripts were
dominant (63%, 39/62). While PHF6 mutations were distributed
to the whole coding region, 14 out of 17 (82%) missense
mutations were located at the PHD2 domain and 8 (47%) were
recurrent (p.R274Q) (Figure 1a). The PHD2 domain of PHF6 is rich
in positively charged amino acids including arginine and lysine,
which were confirmed to be essential for the DNA-binding
capacity of PHF6 as recently reported.12 Consequently, missense
mutations affecting these amino acids in the PHD2 domain
(p.R274Q and p.K235E) (Figure 1a) might result in loss of PHF6
function. Together with highly frequent truncating mutations and
dominant deletions, most of the PHF6 mutations (87%; 53/61) might
be pathogenic in myeloid neoplasms due to loss of function.
Clinically, PHF6 mutations were detected in the cases with AML

with myelodysplasia-related changes (AML/MRC) (4/26, 15.4%),
de novo AML (11/340, 3.2%), chronic myelomonocytic leukemia
(CMML) (4/86, 4.7%), MDS (34/1139, 3.0%) and chronic
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