Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity

Abstract

Granulocyte macrophage-colony-stimulating factor (GM-CSF) signaling regulates hematopoiesis and immune responses. CSF2RA, the gene encoding the α-subunit for GM-CSF, is significantly downregulated in t(8;21) (RUNX1-ETO or RE) leukemia patients, suggesting that it may serve as a tumor suppressor. We previously reported that GM-CSF signaling is inhibitory to RE leukemogenesis. Here we conducted gene expression profiling of primary RE hematopoietic stem/progenitor cells (HSPCs) treated with GM-CSF to elucidate the mechanisms mediating the negative effects of GM on RE leukemogenicity. We observed that GM treatment of RE HSPCs resulted in a unique gene expression profile that resembles primary human cells undergoing myelopoiesis, which was not observed in control HSPCs. Additionally, we discovered that GM-CSF signaling attenuates MYC-associated gene signatures in RE HSPCs. In agreement with this, a functional screen of a subset of GM-CSF-responsive genes demonstrated that a MYC inhibitor, MXI1 (Max interactor 1), reduced the leukemic potential of RE HSPCs and t(8;21) acute myeloid leukemia (AML) cells. Furthermore, MYC knockdown and treatment with the BET (bromodomain and extra terminal domain) inhibitor JQ1 reduced the leukemic potential of t(8;21) cell lines. Altogether, we discovered a novel molecular mechanism mediating the GM-CSF-induced reduction in leukemic potential of RE cells, and our findings support MYC inhibition as an effective strategy for reducing the leukemogenicity of t(8;21) AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. de Groot RP, Coffer PJ, Koenderman L . Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 1998; 10: 619–628.

    Article  CAS  PubMed  Google Scholar 

  2. Young DC, Griffin JD . Autocrine secretion of GM-CSF in acute myeloblastic leukemia. Blood 1986; 68: 1178–1181.

    CAS  PubMed  Google Scholar 

  3. Lanza F, Castagnari B, Rigolin G, Moretti S, Latorraca A, Ferrari L et al. Flow cytometry measurement of GM-CSF receptors in acute leukemic blasts, and normal hemopoietic cells. Leukemia 1997; 11: 1700–1710.

    Article  CAS  PubMed  Google Scholar 

  4. Matsuura S, Yan M, Lo MC, Ahn EY, Weng S, Dangoor D et al. Negative effects of GM-CSF signaling in a murine model of t(8;21)-induced leukemia. Blood 2012; 119: 3155–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Peterson LF, Boyapati A, Ahn E-Y, Biggs JR, Okumura AJ, Lo M-C et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007; 110: 799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  7. Nishii K, Usui E, Katayama N, Lorenzo F, Nakase K, Kobayashi T et al. Characteristics of t(8;21) acute myeloid leukemia (AML) with additional chromosomal abnormality: concomitant trisomy 4 may constitute a distinctive subtype of t(8;21) AML. Leukemia 2003; 17: 731–737.

    Article  CAS  PubMed  Google Scholar 

  8. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  9. Roboz GJ . Current treatment of acute myeloid leukemia. Curr Opin Oncol 2012; 24: 711–719.

    Article  CAS  PubMed  Google Scholar 

  10. Lam K, Zhang DE . RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark Ed) 2012; 17: 1120–1139.

    Article  CAS  Google Scholar 

  11. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  13. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  14. Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD . The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood 2002; 99: 15–23.

    Article  CAS  PubMed  Google Scholar 

  15. Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006; 135: 165–173.

    Article  PubMed  Google Scholar 

  16. Valk PJM, Verhaak RGW, Beijen MA, Erpelinck CAJ, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  17. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R . Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kita K, Shirakawa S, Kamada N . Cellular characteristics of acute myeloblastic leukemia associated with t(8;21)(q22;q22). The Japanese Cooperative Group of Leukemia/Lymphoma. Leuk Lymphoma 1994; 13: 229–234.

    Article  CAS  PubMed  Google Scholar 

  19. Jahns-Streubel G, Braess J, Schoch C, Fonatsch C, Haase D, Binder C et al. Cytogenetic subgroups in acute myeloid leukemia differ in proliferative activity and response to GM-CSF. Leukemia 2001; 15: 377–384.

    Article  CAS  PubMed  Google Scholar 

  20. Zervos AS, Gyuris J, Brent R . Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 1994; 79: 223–232.

    Google Scholar 

  21. Liu Y, Chen W, Gaudet J, Cheney MD, Roudaia L, Cierpicki T et al. Structural basis for recognition of SMRT/N-CoR by the MYND domain and its contribution to AML1/ETO's activity. Cancer Cell 2007; 11: 483–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown AL, Peters M, D'Andrea RJ, Gonda TJ . Constitutive mutants of the GM-CSF receptor reveal multiple pathways leading to myeloid cell survival, proliferation, and granulocyte–macrophage differentiation. Blood 2004; 103: 507–516.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari F, Bortoluzzi S, Coppe A, Basso D, Bicciato S, Zini R et al. Genomic expression during human myelopoiesis. BMC Genomics 2007; 8: 264.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mulloy JC, Cammenga J, Berguido FJ, Wu K, Zhou P, Comenzo RL et al. Maintaining the self-renewal and differentiation potential of human CD34+ hematopoietic cells using a single genetic element. Blood 2003; 102: 4369–4376.

    Article  CAS  PubMed  Google Scholar 

  25. Gu L, Chiang KY, Zhu N, Findley HW, Zhou M . Contribution of STAT3 to the activation of survivin by GM-CSF in CD34+ cell lines. Exp Hematol 2007; 35: 957–966.

    Article  CAS  PubMed  Google Scholar 

  26. Sutherland HJ, Lansdorp PM, Henkelman DH, Eaves AC, Eaves CJ . Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 1990; 87: 3584–3588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ragione FD, Iolascon A . Inactivation of cyclin-dependent kinase inhibitor genes and development of human acute leukemias. Leuk Lymphoma 1997; 25: 23–35.

    Article  CAS  PubMed  Google Scholar 

  28. Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV . An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 2003; 4: R69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  30. Gery S, Gombart AF, Yi WS, Koeffler C, Hofmann WK, Koeffler HP . Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood 2005; 106: 2827–2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma O, Hong S, Guo H, Ghiaur G, Friedman AD . Granulopoiesis requires increased C/EBPα compared to monopoiesis, correlated with elevated Cebpa in immature G-CSF receptor versus M-CSF receptor expressing cells. PLoS One 2014; 9: e95784.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8; 21 chromosome translocation. Blood 1991; 77: 2031–2031.

    CAS  PubMed  Google Scholar 

  33. Matozaki S, Nakagawa T, Kawaguchi R, Aozaki R, Tsutsumi M, Murayama T et al. Establishment of a myeloid leukaemic cell line (SKNO-1) from a patient with t(8;21) who acquired monosomy 17 during disease progression. Br J Haematol 1995; 89: 805–811.

    Article  CAS  PubMed  Google Scholar 

  34. Brown MA, Harrison-Smith M, DeLuca E, Begley CG, Gough NM . No evidence for GM-CSF receptor alpha chain gene mutation in AML-M2 leukemias which have lost a sex chromosome. Leukemia 1994; 8: 1774–1779.

    CAS  PubMed  Google Scholar 

  35. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  PubMed  Google Scholar 

  36. Westendorf JJ, Yamamoto CM, Lenny N, Downing JR, Selsted ME, Hiebert SW . The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998; 18: 322–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B . Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncog 2011; 16: 129–140.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Perugini M, Iarossi DG, Kok CH, Cummings N, Diakiw SM, Brown AL et al. GADD45A methylation predicts poor overall survival in acute myeloid leukemia and is associated with IDH1/2 and DNMT3A mutations. Leukemia 2013; 27: 1588–1592.

    Article  CAS  PubMed  Google Scholar 

  39. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA 2011; 108: 16669–16674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fowler T, Ghatak P, Price DH, Conaway R, Conaway J, Chiang CM et al. Regulation of MYC expression and differential JQ1 sensitivity in cancer cells. PLoS One 2014; 9: e87003.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frank R, Zhang J, Uchida H, Meyers S, Hiebert SW, Nimer SD . The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 1995; 11: 2667–2674.

    CAS  PubMed  Google Scholar 

  43. Peters WP, Rosner G, Ross M, Vredenburgh J, Meisenberg B, Gilbert C et al. Comparative effects of granulocyte–macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) on priming peripheral blood progenitor cells for use with autologous bone marrow after high-dose chemotherapy. Blood 1993; 81: 1709–1719.

    CAS  PubMed  Google Scholar 

  44. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD . Granulocyte–macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 1988; 1: 1194–1198.

    Article  CAS  PubMed  Google Scholar 

  45. Hast R, Hellström-Lindberg E, Ohm L, Björkholm M, Celsing F, Dahl IM et al. No benefit from adding GM-CSF to induction chemotherapy in transforming myelodysplastic syndromes: better outcome in patients with less proliferative disease. Leukemia 2003; 17: 1827–1833.

    Article  CAS  PubMed  Google Scholar 

  46. Ravandi F . Role of cytokines in the treatment of acute leukemias: a review. Leukemia 2006; 20: 563–571.

    Article  CAS  PubMed  Google Scholar 

  47. Gaipa G, Bugarin C, Longoni D, Cesana S, Molteni C, Faini A et al. Aberrant GM-CSF signal transduction pathway in juvenile myelomonocytic leukemia assayed by flow cytometric intracellular STAT5 phosphorylation measurement. Leukemia 2009; 23: 791–793.

    Article  CAS  PubMed  Google Scholar 

  48. Yang G, Khalaf W, van de Locht L, Jansen JH, Gao M, Thompson MA et al. Transcriptional repression of the Neurofibromatosis-1 tumor suppressor by the t(8;21) fusion protein. Mol Cell Biol 2005; 25: 5869–5879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Delgado MD, León J . Myc roles in hematopoiesis and leukemia. Genes Cancer 2010; 1: 605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gowda SD, Koler RD, Bagby GC . Regulation of C-myc expression during growth and differentiation of normal and leukemic human myeloid progenitor cells. J Clin Invest 1986; 77: 271–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steffen B, Knop M, Bergholz U, Vakhrusheva O, Rode M, Köhler G et al. AML1/ETO induces self-renewal in hematopoietic progenitor cells via the Groucho-related amino-terminal AES protein. Blood 2011; 117: 4328–4337.

    Article  CAS  PubMed  Google Scholar 

  53. Müller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol 2004; 24: 2890–2904.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dang CV . c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 1999; 19: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van de Laar L, Coffer PJ, Woltman AM . Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012; 119: 3383–3393.

    Article  CAS  PubMed  Google Scholar 

  56. Waller EK . The role of sargramostim (rhGM-CSF) as immunotherapy. Oncologist 2007; 12 (Suppl 2): 22–26.

    CAS  PubMed  Google Scholar 

  57. Quezada SA, Peggs KS, Curran MA, Allison JP . CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 2006; 116: 1935–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Touw I, Donath J, Pouwels K, van Buitenen C, Schipper P, Santini V et al. Acute myeloid leukemias with chromosomal abnormalities involving the 21q22 region identified by their in vitro responsiveness to interleukin-5. Leukemia 1991; 5: 687–692.

    CAS  PubMed  Google Scholar 

  59. Woiciechowsky A, Regn S, Kolb HJ, Roskrow M . Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukemia-specific cytotoxic T cell response from patients with acute myeloid leukemia. Leukemia 2001; 15: 246–255.

    Article  CAS  PubMed  Google Scholar 

  60. Tarte K, Fiol G, Rossi JF, Klein B . Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro. Leukemia 2000; 14: 2182–2192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the UC San Diego IGM Genomic Center for performing the microarray, as well as Dr Donna Neuberg and Dr Kristen Stevenson (Dana-Farber Cancer Institute) for advising with microarray data analysis. For flow cytometry expertise, we thank Dennis J Young of the UC San Diego Moores Cancer Center’s Flow Cytometry Shared Resource. Additionally, we also thank Dr Olivier Harismendy (UC San Diego) and Dr Kristin Jepsen (UC San Diego IGM Genomic Center) for their assistance with the barcode sequencing and data analysis. SW has received 2 years of fellowship support from the National Cancer Institute (NCI 5T32CA67754-17). Finally, we are very grateful to everyone in the Zhang Lab for helpful discussions. This work was supported by funding from the National Institutes of Health (NIH R01CA192924).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D-E Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, S., Matsuura, S., Mowery, C. et al. Restoration of MYC-repressed targets mediates the negative effects of GM-CSF on RUNX1-ETO leukemogenicity. Leukemia 31, 159–169 (2017). https://doi.org/10.1038/leu.2016.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.167

This article is cited by

Search

Quick links