Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic myelogenous leukemia

Effect of tyrosine kinase inhibitors on stemness in normal and chronic myeloid leukemia cells

Abstract

Although tyrosine kinase inhibitors (TKIs) efficiently cure chronic myeloid leukemia (CML), they can fail to eradicate CML stem cells (CML-SCs). The mechanisms responsible for CML-SC survival need to be understood for designing therapies. Several previous studies suggest that TKIs could modulate CML-SC quiescence. Unfortunately, CML-SCs are insufficiently available. Induced pluripotent stem cells (iPSCs) offer a promising alternative. In this work, we used iPSCs derived from CML patients (Ph+). Ph+ iPSC clones expressed lower levels of stemness markers than normal iPSCs. BCR–ABL1 was found to be involved in stemness regulation and ERK1/2 to have a key role in the signaling pathway. TKIs unexpectedly promoted stemness marker expression in Ph+ iPSC clones. Imatinib also retained quiescence and induced stemness gene expression in CML-SCs. Our results suggest that TKIs might have a role in residual disease and confirm the need for a targeted therapy different from TKIs that could overcome the stemness-promoting effect caused by TKIs. Interestingly, a similar pro-stemness effect was observed in normal iPSCs and hematopoietic SCs. These findings could help to explain CML resistance mechanisms and the teratogenic side-effects of TKIs in embryonic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  PubMed  Google Scholar 

  3. Mahon FX, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  PubMed  Google Scholar 

  4. O’Hare T, Zabriskie MS, Eiring AM, Deininger MW . Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer 2012; 12: 513–526.

    Article  PubMed  Google Scholar 

  5. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL . Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  6. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  PubMed  Google Scholar 

  7. Chomel JC, Bonnet ML, Sorel N, Bertrand A, Meunier MC, Fichelson S et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011; 118: 3657–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger M, Druker BJ . Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

    Article  CAS  PubMed  Google Scholar 

  9. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 2012; 119: 1501–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 2006; 107: 4532–4539.

    Article  CAS  PubMed  Google Scholar 

  12. Jørgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL . Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 2007; 109: 4016–4019.

    Article  PubMed  Google Scholar 

  13. Pellicano F, Scott MT, Helgason GV, Hopcroft LEM, Allan EK, Aspinall-O’Dea M et al. The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors. Stem Cells 2014; 32: 2324–2337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  15. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  16. Kotini AG, Chang CJ, Boussaad I, Delrow JJ, Dolezal EK, Nagulapally AB et al. Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells. Nat Biotechnol 2015; 33: 646–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gandre-Babbe S, Paluru P, Aribeana C, Chou ST, Bresolin S, Lu L et al. Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 2013; 121: 4925–4929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Muleno-Navarro S, Sevilla A, Roman AC, Lee DF, D’Souza SL, Pardo S et al. Myeloid dysregulation in a human induced pluripotent stem cell model of PTPN11-associated juvenile myelomonocytic leukemia. Cell Rep 2015; 13: 504–515.

    Article  Google Scholar 

  19. Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 2011; 117: e109–e119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 2012; 119: 6234–6242.

    Article  CAS  PubMed  Google Scholar 

  21. Bedel A, Pasquet JM, Lippert E, Taillepierre M, Lagarde V, Dabernat S et al. Variable behavior of iPSCs derived from CML patients for response to TKI and hematopoietic differentiation. PLoS One 2013; 8: e71596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suknuntha K, Ishii Y, Tao L, Hu K, McIntosh BE, Yang D et al. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells. Stem Cell Res 2015; 15: 678–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Corbin AS, O’Hare T, Gu Z, Kraft IL, Eiring AM, Khorashad JS et al. KIT signaling governs differential sensitivity of mature and primitive CML progenitors to tyrosine kinase inhibitors. Cancer Res 2013; 73: 5775–5786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CTH et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 2014; 123: 3316–3326.

    Article  CAS  PubMed  Google Scholar 

  25. Bedel A, Taillepierre M, Guyonnet-Duperat V, Lippert E, Dubus P, Dabernat S et al. Metabolic correction of congenital erythropoietic porphyria with iPSCs free of reprogramming factors. Am J Hum Genet 2012; 91: 109–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dewald GW, Wyatt WA, Juneau AL, Carlson RO, Zinsmeister AR, Jalal SM et al. Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood 1998; 91: 3357–3365.

    CAS  PubMed  Google Scholar 

  27. Carette JE, Pruszak J, Varadarajan M, Blomen VA, Gokhale S, Camargo FD et al. Generation of iPSCs from cultured human malignant cells. Blood 2010; 115: 4039–4042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Druker BJ, Tamura S, Buchdunger E, Segal GM, Fanning S, Zimmermann J, Lydon NB . Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  29. Steegmann JL, Cervantes F, Le Coutre P, Porkka K, Saglio G . Off -target effects of BCR-ABL1 inhibitors and their potential long-term implications in patients with chronic myeloid leukemia. Leuk Lymphoma 2012; 53: 2351–2361.

    Article  CAS  PubMed  Google Scholar 

  30. Belloc F, Airiau K, Jeanneteau M, Garcia M, Guerin E, Lippert E et al. The stem cell factor–c-KIT pathway must be inhibited to enable apoptosis induced by BCR–ABL inhibitors in chronic myelogenous leukemia cells. Leukemia 2009; 23: 679–685.

    Article  CAS  PubMed  Google Scholar 

  31. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A . Promotion of reprogramming to ground state pluripotency by signal inhibition. Plos Biology 2008; 6: e253.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S . A combined chemical and genetic approach for the generation of Induced Pluripotent Stem Cells. Cell Stem Cell 2008; 2: 525–528.

    Article  CAS  PubMed  Google Scholar 

  34. Vrbsky J, Tereh T, Kyrylenko S, Dvorak P, Krejci L . MEK and TGF-beta Inhibition promotes reprogramming without the use of transcription factor. PLoS One 2015; 10: e0127739.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Spelat R, Ferro F, Curcio F . Serine 111 phosphorylation regulates OCT4A Protein subcellular distribution and degradation. J Biol Chem 2012; 287: 38279–38288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brumbaugh J, Hou Z, Russell JD, Howden SE, Yu P, Ledvina AR et al. Phosphorylation regulates human OCT4. Proc Natl Acad Sci 2012; 109: 7162–7168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen G, Xu X, Zhang L, Fu Y, Wang M, Gu H, Xie X . Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Res 2014; 24: 1121–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolch W, Pitt A . Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 2010; 10: 618–629.

    Article  CAS  PubMed  Google Scholar 

  39. Cilloni D, Saglio G . Molecular pathways: BCR-ABL. Clin Cancer Res 2012; 18: 930–937.

    Article  CAS  PubMed  Google Scholar 

  40. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273: 18623–18632.

    Article  CAS  PubMed  Google Scholar 

  41. Chaurasia P, Gajzer DC, Schaniel C, D’Souza S, Hoffman R . Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest 2014; 124: 2378–2395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  43. Pellicano F, Holyoake TL . Assembling defenses against therapy-resistant leukemic stem cells: Bcl6 joins the ranks. J Exp Med 2011; 208: 2155–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Friedmann-Morvinski D, Verma IM . Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 2014; 15: 244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Curry EL, Moad M, Robson CN, Heer R . Using induced pluripotent stem cells as a tool for modeling carcinogenesis. World J Stem Cells 2015; 7: 461–469.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ramos-Mejia V, Fraga MF, Menendez P . iPSCs from cancer cells: challenges and opportunities. Trends Mol Med 2012; 18: 245–247.

    Article  CAS  PubMed  Google Scholar 

  47. Barroso-delJesus A, Romero-Lopez C, Lucena-Aguilar G, Melen GJ, Sanchez L, Ligero G et al. Embryonic stem cell-specific miR302-367 cluster: human gene structure and functional characterization of its core promoter. Mol Cell Biol 2008; 28: 6609–6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onder TT, Daley GQ . microRNAs become macro players in somatic cell reprogramming. Genome Med 2011; 3: 40.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lipchina I, Studer L, Betel D . The expanding role of miR302–367 in pluripotency and reprogramming. Cell Cycle 2012; 11: 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  50. Jerabek S, Merino F, Schöler HR, Cojocaru V . OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochim Biophys Acta 2014; 1839: 138–154.

    Article  CAS  PubMed  Google Scholar 

  51. Hu S, Wilson KD, Ghosh Z, Han L, Wang Y, Lan F et al. MicroRNA-302 increases reprogramming efficiency via repression of NR2F2. Stem Cells 2013; 31: 259–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Cheng H, Gao S, Lu X, He F, Hu L et al. Reprogramming of MLL-AF9 leukemia cells into pluripotent stem cells. Leukemia 2014; 28: 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang H, Gayen S, Xiong J, Zhou B, Shanmugam AK, Sun Y et al. MLL1 inhibition reprograms epiblast stem cells to naive pluripotency. Cell Stem Cell 2016; 18: 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Staerk J, Lyssiotis CA, Medeiro LA, Bollong M, Foreman RK, Zhu S et al. Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angew Chem Int Ed Engl 2011; 50: 5734–5736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pye SM, Cortes J, Ault P, Hatfield A, Kantarjian H, Pilot R et al. The effects of imatinib on pregnancy outcome. Blood 2008; 111: 5505–5508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mukhopadhyay A, Dasgupta S, Ray UK, Gharami F, Bose CK et al. Pregnancy outcome in chronic myeloid leukemia patients on imatinib therapy. Ir J Med Sci 2015; 184: 183–188.

    Article  CAS  PubMed  Google Scholar 

  57. Shash E, Bassi S, Cocorocchio E, Colpi GM, Cinieri S et al. Fatherhood during imatinib. Acta Oncol 2011; 50: 734–735.

    Article  PubMed  Google Scholar 

  58. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 2008; 7: 48–58.

    Article  CAS  PubMed  Google Scholar 

  59. Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G et al. Erosion of the chronic myeloid leukemia stem cell pool by PPARγ agonists. Nature 2015; 525: 380–383.

    Article  CAS  PubMed  Google Scholar 

  60. Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A . IFNa activates dormant haematopoietic stem cells in vivo. Nature 2009; 458: 904–908.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Bordeaux vectorology platform (Véronique Guyonnet Duperat, Alice Bibeyran, Quentin Simounet) and the Bordeaux cytometry platform (Vincent Pitard and Santiago Gonzalez). We are grateful to Anne-Sophie Espadinha, Elodie Laharanne, Olivier Mansier, Eric Lippert, Jean Max Pasquet, Valerie Prouzet-Mauléon, Valerie Lagarde, Francois Moisan for their technical help and/or for providing reagents. We thank Etablissement Français du Sang for providing CML cytapheresis and Maison de Santé Protestante de Bordeaux-Bagatelle Hospital for providing umbilical cord blood samples. AB and FMG are supported by a grant from the Ligue Dordogne Contre le Cancer, LC is supported by a fellowship from INSERM/Region Aquitaine, F-XM is supported by SIRIC Brio. AB, FMG and F-XM are supported by a grant from Fondation de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Moreau-Gaudry.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charaf, L., Mahon, FX., Lamrissi-Garcia, I. et al. Effect of tyrosine kinase inhibitors on stemness in normal and chronic myeloid leukemia cells. Leukemia 31, 65–74 (2017). https://doi.org/10.1038/leu.2016.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.154

This article is cited by

Search

Quick links