Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo

Abstract

Galectin-1 (Gal-1) is involved in tumoral angiogenesis, hypoxia and metastases. Actually the Gal-1 expression profile in multiple myeloma (MM) patients and its pathophysiological role in MM-induced angiogenesis and tumoral growth are unknown. In this study, we found that Gal-1 expression by MM cells was upregulated in hypoxic conditions and that stable knockdown of hypoxia inducible factor-1α significantly downregulated its expression. Therefore, we performed Gal-1 inhibition using lentivirus transfection of shRNA anti-Gal-1 in human myeloma cell lines (HMCLs), and showed that its suppression modified transcriptional profiles in both hypoxic and normoxic conditions. Interestingly, Gal-1 inhibition in MM cells downregulated proangiogenic genes, including MMP9 and CCL2, and upregulated the antiangiogenic ones SEMA3A and CXCL10. Consistently, Gal-1 suppression in MM cells significantly decreased their proangiogenic properties in vitro. This was confirmed in vivo, in two different mouse models injected with HMCLs transfected with anti-Gal-1 shRNA or the control vector. Gal-1 suppression in both models significantly reduced tumor burden and microvascular density as compared with the control mice. Moreover, Gal-1 suppression induced smaller lytic lesions on X-ray in the intratibial model. Overall, our data indicate that Gal-1 is a new potential therapeutic target in MM blocking angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Rabinovich GA, Toscano MA . Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 2009; 9: 338–352.

    Article  CAS  Google Scholar 

  2. Thijssen VL, Heusschen R, Caers J, Griffioen AW . Galectin expression in cancer diagnosis and prognosis: a systematic review. Biochim Biophys Acta 2015; 1855: 235–247.

    CAS  PubMed  Google Scholar 

  3. Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S et al. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev 2012; 31: 763–778.

    Article  CAS  Google Scholar 

  4. Cedeno-Laurent F, Opperman M, Barthel SR, Kuchroo VK, Dimitroff CJ . Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. J Immunol 2012; 188: 3127–3137.

    Article  CAS  Google Scholar 

  5. Hsieh SH, Ying NW, Wu MH, Chiang WF, Hsu CL, Wong TY et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 2008; 27: 3746–3753.

    Article  CAS  Google Scholar 

  6. Thijssen VL, Barkan B, Shoji H, Aries IM, Mathieu V, Deltour L et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res 2010; 70: 6216–6224.

    Article  CAS  Google Scholar 

  7. Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 2006; 103: 15975–15980.

    Article  CAS  Google Scholar 

  8. Wu MH, Ying NW, Hong TM, Chiang WF, Lin YT, Chen YL . Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis 2014; 17: 839–849.

    Article  CAS  Google Scholar 

  9. Croci DO, Salatino M, Rubinstein N, Cerliani JP, Cavallin LE, Leung HJ et al. Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma. J Exp Med 2012; 209: 1985–2000.

    Article  CAS  Google Scholar 

  10. White NM, Masui O, Newsted D, Scorilas A, Romaschin AD, Bjarnason GA et al. Galectin-1 has potential prognostic significance and is implicated in clear cell renal cell carcinoma progression through the HIF/mTOR signaling axis. Br J Cancer 2014; 110: 1250–1259.

    Article  CAS  Google Scholar 

  11. Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol 2005; 23: 8932–8941.

    Article  CAS  Google Scholar 

  12. Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F et al. Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis 2010; 31: 1367–1375.

    Article  CAS  Google Scholar 

  13. Zhou X, Li D, Wang X, Zhang B, Zhu H, Zhao J . Galectin-1 is overexpressed in CD133+ human lung adenocarcinoma cells and promotes their growth and invasiveness. Oncotarget 2015; 6: 3111–3122.

    PubMed  Google Scholar 

  14. Wu MH, Hong TM, Cheng HW, Pan SH, Liang YR, Hong HC et al. Galectin-1-mediated tumor invasion and metastasis, up-regulated matrix metalloproteinase expression, and reorganized actin cytoskeletons. Mol Cancer Res 2009; 7: 311–318.

    Article  CAS  Google Scholar 

  15. Wu MH, Hong HC, Hong TM, Chiang WF, Jin YT, Chen YL . Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res 2011; 17: 1306–1316.

    Article  CAS  Google Scholar 

  16. Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S, Mendez-Huergo SP et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 2013; 73: 1107–1117.

    Article  CAS  Google Scholar 

  17. D'Haene N, Sauvage S, Maris C, Adanja I, Le Mercier M, Decaestecker C et al. VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis. PLoS One 2013; 8: e67029.

    Article  CAS  Google Scholar 

  18. Croci DO, Cerliani JP, Dalotto-Moreno T, Mendez-Huergo SP, Mascanfroni ID, Dergan-Dylon S et al. Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors. Cell 2014; 156: 744–758.

    Article  CAS  Google Scholar 

  19. Croci DO, Rabinovich GA . Linking tumor hypoxia with VEGFR2 signaling and compensatory angiogenesis: glycans make the difference. Oncoimmunology 2014; 3: e29380.

    Article  Google Scholar 

  20. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  Google Scholar 

  21. Roodman GD . Pathogenesis of myeloma bone disease. Leukemia 2009; 23: 435–441.

    Article  CAS  Google Scholar 

  22. Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S . Angiogenesis and multiple myeloma. Cancer Microenviron 2011; 4: 325–337.

    Article  CAS  Google Scholar 

  23. Vacca A, Ribatti D . Bone marrow angiogenesis in multiple myeloma. Leukemia 2006; 20: 193–199.

    Article  CAS  Google Scholar 

  24. Podar K, Anderson KC . The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 2005; 105: 1383–1395.

    Article  CAS  Google Scholar 

  25. Barille S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 1997; 90: 1649–1655.

    CAS  PubMed  Google Scholar 

  26. Van Valckenborgh E, Bakkus M, Munaut C, Noel A St, Pierre Y, Asosingh K et al. Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 2002; 101: 512–518.

    Article  CAS  Google Scholar 

  27. Vacca A, Scavelli C, Serini G, Di Pietro G, Cirulli T, Merchionne F et al. Loss of inhibitory semaphorin 3A (SEMA3A) autocrine loops in bone marrow endothelial cells of patients with multiple myeloma. Blood 2006; 108: 1661–1667.

    Article  CAS  Google Scholar 

  28. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D et al. The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 2007; 110: 4464–4475.

    Article  CAS  Google Scholar 

  29. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R et al. Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant 2004; 34: 235–239.

    Article  CAS  Google Scholar 

  30. Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, Lazzaretti M et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1alpha overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 2010; 24: 1967–1970.

    Article  CAS  Google Scholar 

  31. Storti P, Bolzoni M, Donofrio G, Airoldi I, Guasco D, Toscani D et al. Hypoxia-inducible factor (HIF)-1alpha suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia 2013; 27: 1697–1706.

    Article  CAS  Google Scholar 

  32. Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino AC . The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25: 1533–1542.

    Article  CAS  Google Scholar 

  33. Agnelli L, Mosca L, Fabris S, Lionetti M, Andronache A, Kwee I et al. A SNP microarray and FISH-based procedure to detect allelic imbalances in multiple myeloma: an integrated genomics approach reveals a wide gene dosage effect. Genes Chromosomes Cancer 2009; 48: 603–614.

    Article  CAS  Google Scholar 

  34. Lombardi L, Poretti G, Mattioli M, Fabris S, Agnelli L, Bicciato S et al. Molecular characterization of human multiple myeloma cell lines by integrative genomics: insights into the biology of the disease. Genes Chromosomes Cancer 2007; 46: 226–238.

    Article  CAS  Google Scholar 

  35. Agnelli L, Forcato M, Ferrari F, Tuana G, Todoerti K, Walker BA et al. The reconstruction of transcriptional networks reveals critical genes with implications for clinical outcome of multiple myeloma. Clin Cancer Res 2011; 17: 7402–7412.

    Article  CAS  Google Scholar 

  36. Goeman JJ, le Cessie S . A goodness-of-fit test for multinomial logistic regression. Biometrics 2006; 62: 980–985.

    Article  Google Scholar 

  37. Storti P, Donofrio G, Colla S, Airoldi I, Bolzoni M, Agnelli L et al. HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia 2011; 25: 527–537.

    Article  CAS  Google Scholar 

  38. D'Souza S, del Prete D, Jin S, Sun Q, Huston AJ, Kostov FE et al. Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 2011; 118: 6871–6880.

    Article  CAS  Google Scholar 

  39. Mirandola L, Yu Y, Chui K, Jenkins MR, Cobos E, John CM et al. Galectin-3C inhibits tumor growth and increases the anticancer activity of bortezomib in a murine model of human multiple myeloma. PLoS One 2011; 6: e21811.

    Article  CAS  Google Scholar 

  40. Streetly MJ, Maharaj L, Joel S, Schey SA, Gribben JG, Cotter FE . GCS-100, a novel galectin-3 antagonist, modulates MCL-1, NOXA, and cell cycle to induce myeloma cell death. Blood 2010; 115: 3939–3948.

    Article  CAS  Google Scholar 

  41. Kobayashi T, Kuroda J, Ashihara E, Oomizu S, Terui Y, Taniyama A et al. Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways. Leukemia 2010; 24: 843–850.

    Article  CAS  Google Scholar 

  42. Shaughnessy JD Jr, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  Google Scholar 

  43. Chen L, Wang S, Zhou Y, Wu X, Entin I, Epstein J et al. Identification of early growth response protein 1 (EGR-1) as a novel target for JUN-induced apoptosis in multiple myeloma. Blood 2010; 115: 61–70.

    Article  CAS  Google Scholar 

  44. Kaiser MF, Johnson DC, Wu P, Walker BA, Brioli A, Mirabella F et al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma. Blood 2013; 122: 219–226.

    Article  CAS  Google Scholar 

  45. Cedeno-Laurent F, Watanabe R, Teague JE, Kupper TS, Clark RA, Dimitroff CJ . Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patie xnts with leukemic cutaneous T-cell lymphoma. Blood 2012; 119: 3534–3538.

    Article  CAS  Google Scholar 

  46. Zacarias Fluck MF, Hess L, Salatino M, Croci DO, Stupirski JC, Di Masso RJ et al. The aggressiveness of murine lymphomas selected in vivo by growth rate correlates with galectin-1 expression and response to cyclophosphamide. Cancer Immunol Immunother 2012; 61: 469–480.

    Article  CAS  Google Scholar 

  47. Ouyang J, Plutschow A, Pogge von Strandmann E, Reiners KS, Ponader S, Rabinovich GA et al. Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma. Blood 2013; 121: 3431–3433.

    Article  CAS  Google Scholar 

  48. Abroun S, Otsuyama K, Shamsasenjan K, Islam A, Amin J, Iqbal MS et al. Galectin-1 supports the survival of CD45RA(-) primary myeloma cells in vitro. Br J Haematol 2008; 142: 754–765.

    Article  CAS  Google Scholar 

  49. Li Y, Zheng Y, Li T, Wang Q, Qian J, Lu Y et al. Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma. Oncotarget 2015; 6: 24218–24229.

    PubMed  PubMed Central  Google Scholar 

  50. Stifter S . The role of nuclear factor kappaB on angiogenesis regulation through monocyte chemotactic protein-1 in myeloma. Med Hypotheses 2006; 66: 384–386.

    Article  CAS  Google Scholar 

  51. Acevedo LM, Barillas S, Weis SM, Gothert JR, Cheresh DA . Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood 2008; 111: 2674–2680.

    Article  CAS  Google Scholar 

  52. Keeley EC, Mehrad B, Strieter RM . Chemokines as mediators of neovascularization. Arterioscler Thromb Vasc Biol 2008; 28: 1928–1936.

    Article  CAS  Google Scholar 

  53. Barash U, Zohar Y, Wildbaum G, Beider K, Nagler A, Karin N et al. Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia 2014; 28: 2178–2187.

    Article  CAS  Google Scholar 

  54. Giuliani N, Bonomini S, Romagnani P, Lazzaretti M, Morandi F, Colla S et al. CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica 2006; 91: 1489–1497.

    CAS  PubMed  Google Scholar 

  55. Le Mercier M, Mathieu V, Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C et al. Knocking down galectin 1 in human hs683 glioblastoma cells impairs both angiogenesis and endoplasmic reticulum stress responses. J Neuropathol Exp Neurol 2008; 67: 456–469.

    Article  CAS  Google Scholar 

  56. Lee YP, Schwarz EM, Davies M, Jo M, Gates J, Zhang X et al. Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res 2002; 62: 5564–5570.

    CAS  PubMed  Google Scholar 

  57. Hayashi M, Nakashima T, Taniguchi M, Kodama T, Kumanogoh A, Takayanagi H . Osteoprotection by semaphorin 3A. Nature 2012; 485: 69–74.

    Article  CAS  Google Scholar 

  58. Miller MC, Klyosov A, Mayo KH . The alpha-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain. Glycobiology 2009; 19: 1034–1045.

    Article  CAS  Google Scholar 

  59. Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Rabinovich GA, Bieche I et al. OTX008, a selective small-molecule inhibitor of galectin-1, downregulates cancer cell proliferation, invasion and tumour angiogenesis. Eur J Cancer 2014; 50: 2463–2477.

    Article  CAS  Google Scholar 

  60. Zucchetti M, Bonezzi K, Frapolli R, Sala F, Borsotti P, Zangarini M et al. Pharmacokinetics and antineoplastic activity of galectin-1-targeting OTX008 in combination with sunitinib. Cancer Chemother Pharmacol 2013; 72: 879–887.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Associazione Italiana per la Ricerca sul Cancro (AIRC) IG2014 no. 15531 (to NG) and IG13018 (to IA). This work was also supported by a fellowship Fondazione Italiana per la Ricerca sul Cancro id. 18152 (MB) and two fellowship by ParmAIL (Associazione italiana contro le leucemie-linfomi e myeloma, Parma) (VM and DG). We thank Dirce Gennari for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Giuliani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storti, P., Marchica, V., Airoldi, I. et al. Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 30, 2351–2363 (2016). https://doi.org/10.1038/leu.2016.137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.137

This article is cited by

Search

Quick links