Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

Smad4 in osteoblasts exerts a differential impact on HSC fate depending on osteoblast maturation stage

Abstract

Osteoblasts (OBs) are indispensable for the maintenance of hematopoietic stem cells (HSCs) in the bone marrow microenvironment. Here we investigated how Smad4 modulates HSC fate at distinct stages of OB development. For this, we conditionally knocked out Smad4 in cells expressing type I collagen (Col1a1) and osteocalcin (OC), respectively. Col1a1-expressing OBs were widely present in both the trabecular and cortical compartment, whereas OC-expressing OBs were predominantly located in the cortical compartment. HSCs from Col1a1 mutants displayed senescence-associated phenotypes. OC mutants did not exhibit HSC senescence-related phenotypes, but instead showed preferential HSC death. Of note, stromal cell-derived factor 1 expression was lower in Col1a1 mutants than control littermates, suggesting potential impairment of CXCR4–CXCL12-mediated HSC retention. Disruption of the CXCR4–CXCL12 axis by AMD3100 administration led to an increase in the senescence-associated β-galactosidase activity and low competitive potential. Collectively, our findings indicate that deletion of Smad4 in OBs differentially modulates HSC fate in a stage-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  2. Ding L, Morrison SJ . Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013; 495: 231–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nature Med 2012; 18: 1651–1657.

    Article  CAS  PubMed  Google Scholar 

  4. Yin T, Li L . The stem cell niches in bone. J Clin Invest 2006; 116: 1195–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439: 599–603.

    Article  CAS  PubMed  Google Scholar 

  6. Morrison SJ, Scadden DT . The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327–334.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  8. Kiel MJ, Radice GL, Morrison SJ . Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 2007; 1: 204–217.

    Article  CAS  PubMed  Google Scholar 

  9. Chen G, Deng C, Li YP . TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 2012; 8: 272–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan X, Weng T, Zhang J, Wang J, Li W, Wan H et al. Smad4 is required for maintaining normal murine postnatal bone homeostasis. J Cell Sci 2007; 120: 2162–2170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Salazar VS, Zarkadis N, Huang L, Watkins M, Kading J, Bonar S et al. Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with beta-catenin. J Cell Sci 2013; 126: 5598–5609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larsson J, Blank U, Helgadottir H, Bjornsson JM, Ehinger M, Goumans MJ et al. TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 2003; 102: 3129–3135.

    Article  CAS  PubMed  Google Scholar 

  13. Singbrant S, Karlsson G, Ehinger M, Olsson K, Jaako P, Miharada K et al. Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood 2010; 115: 4689–4698.

    Article  CAS  PubMed  Google Scholar 

  14. Karlsson G, Blank U, Moody JL, Ehinger M, Singbrant S, Deng CX et al. Smad4 is critical for self-renewal of hematopoietic stem cells. J Exp Med 2007; 204: 467–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quere R, Karlsson G, Hertwig F, Rissler M, Lindqvist B, Fioretos T et al. Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood 2011; 117: 5918–5930.

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, Li C, Herrera PL, Deng CX . Generation of Smad4/Dpc4 conditional knockout mice. Genesis 2002; 32: 80–81.

    Article  CAS  PubMed  Google Scholar 

  17. Soriano P . Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet 1999; 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  18. Liu F, Woitge HW, Braut A, Kronenberg MS, Lichtler AC, Mina M et al. Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int J Dev Biol 2004; 48: 645–653.

    Article  CAS  PubMed  Google Scholar 

  19. Phan TC, Xu J, Zheng MH . Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopath 2004; 19: 1325–1344.

    CAS  Google Scholar 

  20. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  21. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193–197.

    Article  CAS  PubMed  Google Scholar 

  22. Kondo M, Weissman IL, Akashi K . Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997; 91: 661–672.

    Article  CAS  PubMed  Google Scholar 

  23. Cho J, Shen H, Yu H, Li H, Cheng T, Lee SB et al. Ewing sarcoma gene Ews regulates hematopoietic stem cell senescence. Blood 2011; 117: 1156–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443: 421–426.

    Article  CAS  PubMed  Google Scholar 

  25. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101–112.

    Article  CAS  PubMed  Google Scholar 

  26. Ema H, Nakauchi H . Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 2000; 95: 2284–2288.

    CAS  PubMed  Google Scholar 

  27. Gakas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HKA . The placenta is a niche for hematopoietic stem cells. Dev Cell 2005; 8: 365–375.

    Article  Google Scholar 

  28. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  29. Itkin T, Lapidot T . SDF-1 keeps HSC quiescent at home. Blood 2011; 117: 373–374.

    Article  CAS  PubMed  Google Scholar 

  30. He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J et al. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 2006; 125: 929–941.

    Article  CAS  PubMed  Google Scholar 

  31. Pan D, Schomber T, Kalberer CP, Terracciano LM, Hafen K, Krenger W et al. Normal erythropoiesis but severe polyposis and bleeding anemia in Smad4-deficient mice. Blood 2007; 110: 3049–3055.

    Article  CAS  PubMed  Google Scholar 

  32. Dar A, Kollet O, Lapidot T . Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34: 967–975.

    Article  CAS  PubMed  Google Scholar 

  33. Thoren LA, Liuba K, Bryder D, Nygren JM, Jensen CT, Qian H et al. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 2008; 180: 2045–2053.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Education (2014R1A1A2004343) and by the Ministry of Science, Information and Communications Technology and Future Planning, Korea (NRF-2013R1A2A2A01967207 and 2013R1A2A1A01007642).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E-S Cho or J-C Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kook, SH., Yun, CY., Sim, HJ. et al. Smad4 in osteoblasts exerts a differential impact on HSC fate depending on osteoblast maturation stage. Leukemia 30, 2039–2046 (2016). https://doi.org/10.1038/leu.2016.133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.133

This article is cited by

Search

Quick links