Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overexpression of FLT3-ITD driven by spi-1 results in expanded myelopoiesis with leukemic phenotype in zebrafish

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Swords R, Freeman C, Giles F . Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 2012; 26: 2176–2185.

    Article  CAS  PubMed  Google Scholar 

  2. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 1996; 10: 1911–1918.

    CAS  PubMed  Google Scholar 

  3. Hou HA, Lin CC, Chou WC, Liu CY, Chen CY, Tang JL et al. Integration of cytogenetic and molecular alterations in risk stratification of 318 patients with de novo non-M3 acute myeloid leukemia. Leukemia 2014; 28: 50–58.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi S . Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol 2011; 4: 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mallardo M, Caronno A, Pruneri G, Raviele PR, Viale A, Pelicci PG et al. NPMc+ and FLT3-ITD mutations cooperate in inducing acute leukaemia in a novel mouse model. Leukemia 2013; 27: 2248–2251.

    Article  CAS  PubMed  Google Scholar 

  6. Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008; 22: 915–931.

    Article  CAS  PubMed  Google Scholar 

  7. Lu JW, Hsieh MS, Liao HA, Yang YJ, Ho YJ, Lin LI . Zebrafish as a model for the study of human myeloid malignancies. Biomed Res Int 2015; 2015: 641475.

    PubMed  PubMed Central  Google Scholar 

  8. Davidson AJ, Zon LI . The 'definitive' (and 'primitive') guide to zebrafish hematopoiesis. Oncogene 2004; 23: 7233–7246.

    Article  CAS  PubMed  Google Scholar 

  9. Ward AC, McPhee DO, Condron MM, Varma S, Cody SH, Onnebo SM et al. The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. Blood 2003; 102: 3238–3240.

    Article  CAS  PubMed  Google Scholar 

  10. Hsu K, Traver D, Kutok JL, Hagen A, Liu TX, Paw BH et al. The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 2004; 104: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  11. Forrester AM, Grabher C, McBride ER, Boyd ER, Vigerstad MH, Edgar A et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 2011; 155: 167–181.

    Article  PubMed  Google Scholar 

  12. Deveau AP, Forrester AM, Coombs AJ, Wagner GS, Grabher C, Chute IC et al. Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease. Leukemia 2015; 29: 2086–2097.

    Article  CAS  PubMed  Google Scholar 

  13. Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 2008; 143: 378–382.

    Article  CAS  PubMed  Google Scholar 

  14. Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M et al. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One 2013; 8: e59070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He BL, Shi X, Man CH, Ma AC, Ekker SC, Chow HC et al. Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood 2014; 123: 2518–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are very grateful to Professor Graham J Lieschke for providing plasmid. The tol2-mpeg1-mCherry was a gift from Anna Huttenlocher (Addgene plasmid #58935). We would like to acknowledge the service provided by the Flow Cytometric Analyzing and Sorting Core Facility at National Taiwan University Hospital. This study was supported by the research grants from National Taiwan University Hospital (NTUH 103S-2452) and Ministry of Science and Technology (MOST-102-2628-B-002-029-MY3, MOST-103-2923-B-002-001 and MOST-104-2314-B-002-128-MY4), Taiwan.

Author contributions

L-IL and J-WL designed and coordinated the research study. J-WL, H-AH and M-SH performed the experiments. J-WL, H-AH and M-SH performed the statistical analysis. J-WL, H-AH, H-FT and L-IL analyzed and interpreted the data. J-WL, H-AH and L-IL wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-I Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, JW., Hou, HA., Hsieh, MS. et al. Overexpression of FLT3-ITD driven by spi-1 results in expanded myelopoiesis with leukemic phenotype in zebrafish. Leukemia 30, 2098–2101 (2016). https://doi.org/10.1038/leu.2016.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.132

This article is cited by

Search

Quick links