Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and molecular genetics

Loss of Dnmt3b accelerates MLL-AF9 leukemia progression

Abstract

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic disorder with a poor prognosis. Abnormal DNA methylation is involved in the initiation and progression of AML. The de novo methyltransferases Dnmt3a and Dnmt3b are responsible for the generation of genomic methylation patterns. While DNMT3A is frequently mutated in hematological malignancies, DNMT3B is rarely mutated. Although it has been previously reported that Dnmt3b functions as a tumor suppressor in a mouse model of Myc-induced lymphomagenesis, its function in AML is yet to be determined. In this study, we demonstrated that deletion of Dnmt3b accelerated the progression of MLL-AF9 leukemia by increasing stemness and enhancing cell cycle progression. Gene profiling analysis revealed upregulation of the oncogenic gene set and downregulation of the cell differentiation gene set. Furthermore, loss of Dnmt3b was able to synergize with Dnmt3a deficiency in leukemia development. Taken together, these results demonstrate that Dnmt3b plays a tumor suppressive role in MLL-AF9 AML progression, thereby providing new insights into the roles of DNA methylation in leukemia development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Huret J, Dessen P, Bernheim A . An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 2001; 15: 987–989.

    Article  CAS  PubMed  Google Scholar 

  2. Meyer C, Schneider B, Jakob S, Strehl S, Attarbaschi A, Schnittger S et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784.

    Article  CAS  PubMed  Google Scholar 

  3. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007; 7: 823–833.

    Article  CAS  PubMed  Google Scholar 

  4. Cozzio A, Passegué E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 2006; 442: 818–822.

    Article  CAS  PubMed  Google Scholar 

  6. Neff T, Armstrong SA . Recent progress toward epigenetic therapies: the example of mixed lineage leukemia. Blood 2013; 121: 4847–4853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krivtsov A, Figueroa ME, Sinha A, Stubbs M, Feng Z, Valk P et al. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia 2013; 27: 852–860.

    Article  CAS  PubMed  Google Scholar 

  8. Okano M, Xie S, Li E . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19: 219–220.

    Article  CAS  PubMed  Google Scholar 

  9. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 1996; 122: 3195–3205.

    CAS  PubMed  Google Scholar 

  10. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH . Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012; 26: 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059.

    Article  Google Scholar 

  14. Shah MY, Vasanthakumar A, Barnes NY, Figueroa ME, Kamp A, Hendrick C et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res 2010; 70: 5840–5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ et al. Hematopoietic Stem Cell Transplantation Corrects the Immunologic Abnormalities Associated With Immunodeficiency Centromeric Instability Facial Dysmorphism Syndrome. Pediatrics 2007; 120: e1341–e1344.

    Article  PubMed  Google Scholar 

  16. Hlady RA, Novakova S, Opavska J, Klinkebiel D, Peters SL, Bies J et al. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest 2012; 122: 163.

    Article  CAS  PubMed  Google Scholar 

  17. Hayette S, Thomas X, Jallades L, Chabane K, Charlot C, Tigaud I et al. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PloS One 2012; 7: e51527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niederwieser C, Kohlschmidt J, Volinia S, Whitman S, Metzeler K, Eisfeld A et al. Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia 2015; 29: 567–575.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng H, Hao S, Liu Y, Pang Y, Ma S, Dong F et al. Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood 2015; 126: 1302–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bagger FO, Rapin N, Theilgaard-Mönch K, Kaczkowski B, Thoren LA, Jendholm J et al. HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis. Nucleic Acids Res 2013; 41: D1034–D1039.

    Article  CAS  PubMed  Google Scholar 

  21. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, van Doorn-Khosrovani SBvW, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  23. Tadokoro Y, Ema H, Okano M, Li E, Nakauchi H . De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med 2007; 204: 715–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jost E, Lin Q, Weidner CI, Wilop S, Hoffmann M, Walenda T et al. Epimutations mimic genomic mutations of DNMT3A in acute myeloid leukemia. Leukemia 2014; 28: 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huntly BJ, Gilliland DG . Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5: 311–321.

    Article  CAS  PubMed  Google Scholar 

  27. Lawrence H, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Kömüves L et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999; 13: 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  28. Gonda TJ, Metcalf D . Expression of myb, myc and fos proto-oncogenes during the differentiation of a murine myeloid leukaemia. Nature 1984; 310: 249–251.

    Article  CAS  PubMed  Google Scholar 

  29. Margot JB, Ehrenhofer-Murray AE, Leonhardt H . Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol 2003; 4: 1.

    Article  Google Scholar 

  30. Sun L, Huang L, Nguyen P, Bisht KS, Bar-Sela G, Ho AS et al. DNA methyltransferase 1 and 3B activate BAG-1 expression via recruitment of CTCFL/BORIS and modulation of promoter histone methylation. Cancer Res 2008; 68: 2726–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li J-Y, Pu M-T, Hirasawa R, Li B-Z, Huang Y-N, Zeng R et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 2007; 27: 8748–8759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loonstra A, Vooijs M, Beverloo HB, Al Allak B, van Drunen E, Kanaar R et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci USA 2001; 98: 9209–9214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kollmann K, Heller G, Ott RG, Scheicher R, Zebedin-Brandl E, Schneckenleithner C et al. c-JUN promotes BCR-ABL–induced lymphoid leukemia by inhibiting methylation of the 5′ region of Cdk6. Blood 2011; 117: 4065–4075.

    Article  CAS  PubMed  Google Scholar 

  37. May AM, Frey A-V, Bogatyreva L, Benkisser-Petersen M, Hauschke D, Lübbert M et al. ID2 and ID3 protein expression mirrors granulopoietic maturation and discriminates between acute leukemia subtypes. Histochem Cell Biol 2014; 141: 431–440.

    Article  CAS  PubMed  Google Scholar 

  38. Pearn L, Fisher J, Burnett AK, Darley RL . The role of PKC and PDK1 in monocyte lineage specification by Ras. Blood 2007; 109: 4461–4469.

    Article  CAS  PubMed  Google Scholar 

  39. Pasqualucci L, Migliazza A, Basso K, Houldsworth J, Chaganti R, Dalla-Favera R . Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 2003; 101: 2914–2923.

    Article  CAS  PubMed  Google Scholar 

  40. Angel P, Karin M . The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129–157.

    CAS  PubMed  Google Scholar 

  41. Hurtz C, Hatzi K, Cerchietti L, Braig M, Park E, Kim Y-m et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med 2011; 208: 2163–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeng Z, Samudio IJ, Zhang W, Estrov Z, Pelicano H, Harris D et al. Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia. Cancer Res 2006; 66: 3737–3746.

    Article  CAS  PubMed  Google Scholar 

  43. Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 2015; 520: 243–247.

    Article  CAS  PubMed  Google Scholar 

  44. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G . Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 2014; 26: 577–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bachman KE, Rountree MR, Baylin SB . Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 2001; 276: 32282–32287.

    Article  CAS  PubMed  Google Scholar 

  46. Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet 2015; 47: 469–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Rau R, Goodell MA . DNMT3A in haematological malignancies. Nat Rev Cancer 2015; 15: 152–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Christman JK . 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 2002; 21: 5483–5495.

    Article  CAS  PubMed  Google Scholar 

  49. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T et al. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 2005; 25: 4727–4741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R et al. 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45-and p53-dependent mechanisms. J Pharmacol Exp Therapeut 2005; 312: 525–536.

    Article  CAS  Google Scholar 

  51. Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry CV et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 2015; 125: 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004; 103: 1901–1908.

    Article  CAS  PubMed  Google Scholar 

  53. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89: 1405–1412.

    CAS  PubMed  Google Scholar 

  55. Schulze I, Rohde C, Scheller-Wendorff M, Krause A, Herbst F, Riemke P et al. Increased DNA methylation of Dnmt3b-targets impairs leukemogenesis. Blood 2016; 127: 1575–1586.

    Article  CAS  PubMed  Google Scholar 

  56. Peters S, Hlady R, Opavska J, Klinkebiel D, Pirruccello S, Talmon G et al. Tumor suppressor functions of Dnmt3a and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia 2014; 28: 1138.

    Article  CAS  PubMed  Google Scholar 

  57. Dawson MA, Kouzarides T . Cancer epigenetics: from mechanism to therapy. Cell 2012; 150: 12–27.

    Article  CAS  PubMed  Google Scholar 

  58. Abdel-Wahab O, Levine RL . Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 2013; 121: 3563–3572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Greenblatt S, Nimer S . Chromatin modifiers and the promise of epigenetic therapy in acute leukemia. Leukemia 2014; 28: 1396–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW et al. Induction of tumors in mice by genomic hypomethylation. Science 2003; 300: 489–492.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Hideo Ema and Yajing Chu for their valuable suggestions for our experiments and critical reading for our manuscript. We are also grateful to our laboratory members and collaborators for their insightful discussion during the course of this work and in the preparation of the manuscript. This work was supported by grants the Ministry of Science and Technology of China (2016ZY05002341, 2011CB964800, 2013CB966902, 2015CB964400), and the National Natural Science Foundation of China (81421002, 81430004, 81330015, 91519315, 81300374, 81300375, 81400077, 81500085).

Author contributions

YZ designed and performed the experiments, analyzed the data and wrote the manuscript. HZ helped with all experiments and assisted with the manuscript. XL performed the methylation analyses. YW and PL helped with the mouse experiments and flow cytometry. FD, YP, SM and HC helped with the data analysis and assisted with the manuscript. SH, FT, WY and XZ conducted the research, analyzed the data and assisted with the manuscript. TC conceived the study, designed the experiments, interpreted the results, wrote the paper and oversaw the research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Cheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Zhang, H., Wang, Y. et al. Loss of Dnmt3b accelerates MLL-AF9 leukemia progression. Leukemia 30, 2373–2384 (2016). https://doi.org/10.1038/leu.2016.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.112

This article is cited by

Search

Quick links