Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft model

Abstract

Although NOD-SCID IL2Rγ−/− (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells were implanted to generate a human bone marrow (huBM-sc)-like niche. We observed that, in contrast to the murine bone marrow (mBM) niche, the expression of BCR-ABL or MLL-AF9 was sufficient to induce both primary acute myeloid leukemia (AML) and acute lymphocytic leukemia (ALL). Stemness was preserved within the human niches as demonstrated by serial transplantation assays. Efficient engraftment of AML MLL-AF9 and blast-crisis chronic myeloid leukemia patient cells was also observed, whereby the immature blast-like phenotype was maintained in the huBM-sc niche but to a much lesser extent in mBM niches. We compared transcriptomes of leukemias derived from mBM niches versus leukemias from huBM-like scaffold-based niches, which revealed striking differences in the expression of genes associated with hypoxia, mitochondria and metabolism. Finally, we utilized the huBM-sc MLL-AF9 B-ALL model to evaluate the efficacy of the I-BET151 inhibitor in vivo. In conclusion, we have established human niche models in which the myeloid and lymphoid features of BCR-ABL+ and MLL-AF9+ leukemias can be studied in detail.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G et al. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rgamma null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 2008; 123: 2222–2227.

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009; 23: 2109–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goyama S, Wunderlich M, Mulloy JC . Xenograft models for normal and malignant stem cells. Blood 2015; 125: 2630–2640.

    Article  CAS  PubMed  Google Scholar 

  4. Vargaftig J, Taussig DC, Griessinger E, njos-Afonso F, Lister TA, Cavenagh J et al. Frequency of leukemic initiating cells does not depend on the xenotransplantation model used. Leukemia 2011; 26: 858–860.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Horton SJ, Jaques J, Woolthuis C, van DJ, Mesuraca M, Huls G et al. MLL-AF9-mediated immortalization of human hematopoietic cells along different lineages changes during ontogeny. Leukemia 2012; 5: 1116–1126.

    Google Scholar 

  6. Rizo A, Horton SJ, Olthof S, Dontje B, Ausema A, van Os R et al. BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 2010; 116: 4621–4630.

    Article  CAS  PubMed  Google Scholar 

  7. Groen RW, Noort WA, Raymakers RA, Prins HJ, Aalders L, Hofhuis FM et al. Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood 2012; 120: e9–e16.

    Article  CAS  PubMed  Google Scholar 

  8. Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J et al. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 2014; 124: 644–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schuringa JJ, Chung KY, Morrone G, Moore MA . Constitutive activation of STAT5A promotes human hematopoietic stem cell self-renewal and erythroid differentiation. J Exp Med 2004; 200: 623–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiarella E, Carra G, Scicchitano S, Codispoti B, Mega T, Lupia M et al. UMG Lenti: novel lentiviral vectors for efficient transgene- and reporter gene expression in human early hematopoietic progenitors. PLoS One 2014; 9: e114795.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Barabe F, Kennedy JA, Hope KJ, Dick JE . Modeling the initiation and progression of human acute leukemia in mice. Science 2007; 316: 600–604.

    Article  CAS  PubMed  Google Scholar 

  12. Dawson MA, Prinjha RK, Dittman A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 2015; 525: 529–542.

    Article  Google Scholar 

  14. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theocharides AP, Rongvaux A, Fritsch K, Flavell RA, Manz MG . Humanized hemato-lymphoid system mice. Haematologica 2016; 101: 5–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ . NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 2004; 18: 341–347.

    Article  CAS  PubMed  Google Scholar 

  17. Feuring-Buske M, Gerhard B, Cashman J, Humphries RK, Eaves CJ, Hogge DE . Improved engraftment of human acute myeloid leukemia progenitor cells in beta 2-microglobulin-deficient NOD/SCID mice and in NOD/SCID mice transgenic for human growth factors. Leukemia 2003; 17: 760–763.

    Article  CAS  PubMed  Google Scholar 

  18. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 2010; 24: 1785–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32: 364–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rongvaux A, Willinger T, Takizawa H, Rathinam C, Auerbach W, Murphy AJ et al. Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo. Proc Natl Acad Sci USA 2011; 108: 2378–2383.

    Article  CAS  PubMed  Google Scholar 

  21. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, Philbrick W et al. Transgenic expression of human signal regulatory protein alpha in Rag2-/-gamma(c)-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc Natl Acad Sci USA 2011; 108: 13218–13223.

    Article  CAS  PubMed  Google Scholar 

  22. Willinger T, Rongvaux A, Takizawa H, Yancopoulos GD, Valenzuela DM, Murphy AJ et al. Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proc Natl Acad Sci USA 2011; 108: 2390–2395.

    Article  CAS  PubMed  Google Scholar 

  23. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA . Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 2011; 32: 321–327.

    Article  CAS  PubMed  Google Scholar 

  24. Medyouf H, Mossner M, Jann JC, Nolte F, Raffel S, Herrmann C et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 2014; 14: 824–837.

    Article  CAS  PubMed  Google Scholar 

  25. Rhyasen GW, Wunderlich M, Tohyama K, Garcia-Manero G, Mulloy JC, Starczynowski DT . An MDS xenograft model utilizing a patient-derived cell line. Leukemia 2014; 28: 1142–1145.

    Article  CAS  PubMed  Google Scholar 

  26. Chalandon Y, Jiang X, Christ O, Loutet S, Thanopoulou E, Eaves A et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19: 442–448.

    Article  CAS  PubMed  Google Scholar 

  27. Sengupta A, Ficker AM, Dunn SK, Madhu M, Cancelas JA . Bmi1 reprograms CML B-lymphoid progenitors to become B-ALL-initiating cells. Blood 2012; 119: 494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN . Hypoxia inducible factors in cancer stem cells. Br J Cancer 2010; 102: 789–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Keith B, Simon MC . Hypoxia-inducible factors, stem cells, and cancer. Cell 2007; 129: 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee KE, Simon MC . From stem cells to cancer stem cells: HIF takes the stage. Curr Opin Cell Biol 2012; 24: 232–235.

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y et al. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 2011; 9: 262–271.

    Article  CAS  PubMed  Google Scholar 

  32. Scandura JM, Boccuni P, Massague J, Nimer SD . Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 2004; 101: 15231–15236.

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE et al. Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci USA 2007; 104: 10494–10499.

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Venugopal C, Manoranjan B, McFarlane N, O'Farrell E, Nolte S et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene 2012; 31: 187–199.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor JJ Erich and Dr A van Loon and colleagues (Departments of Obstetrics, University Medical Center Groningen and Martini Hospital Groningen) for collecting cord blood; Jeanet Dales for help with CB isolations; and Henk Moes, Roelof Jan van der Lei and Geert Mesander from Flow Cytometrics Facility for technical assistance with cell sorting. This work was supported by grants from the Dutch Cancer Society (2009-4411; VU2011-5127) and by the EU (ITN EuroCSC). I-BET151 was kindly provided by Nicholas Smithers (GSK R&D, UK).

Author contributions

PS and MC designed and conducted experiments, performed analysis and wrote the manuscript; JJ, AZBV, LLA, RWJG and JJS conducted experiments and analyzed data; HY and JDB contributed scaffold materials; ACMM, RWJG and EV analyzed data and participated in writing the manuscript; JJS designed experiments, performed analysis, wrote the manuscript and supervised the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Schuringa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sontakke, P., Carretta, M., Jaques, J. et al. Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft model. Leukemia 30, 2064–2073 (2016). https://doi.org/10.1038/leu.2016.108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.108

This article is cited by

Search

Quick links