Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells

Abstract

The rapid proliferation of myeloid leukemia cells is highly dependent on increased glucose metabolism. Through an unbiased metabolomics analysis of leukemia cells, we found that the glycogenic precursor UDP-D-glucose is pervasively upregulated, despite low glycogen levels. Targeting the rate-limiting glycogen synthase 1 (GYS1) not only decreased glycolytic flux but also increased activation of the glycogen-responsive AMP kinase (AMPK), leading to significant growth suppression. Further, genetic and pharmacological hyper-activation of AMPK was sufficient to induce the changes observed with GYS1 targeting. Cancer genomics data also indicate that elevated levels of the glycogenic enzymes GYS1/2 or GBE1 (glycogen branching enzyme 1) are associated with poor survival in AML. These results suggest a novel mechanism whereby leukemic cells sustain aberrant proliferation by suppressing excess AMPK activity through elevated glycogenic flux and provide a therapeutic entry point for targeting leukemia cell metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  2. Hehlmann R, Muller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol 2014; 32: 415–423.

    Article  PubMed  Google Scholar 

  3. Lunt SY, Vander Heiden MG . Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441–464.

    Article  CAS  PubMed  Google Scholar 

  4. Schulze A, Harris AL . How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012; 491: 364–373.

    Article  CAS  PubMed  Google Scholar 

  5. Warburg O . On respiratory impairment in cancer cells. Science 1956; 124: 269–270.

    CAS  PubMed  Google Scholar 

  6. Kim JH, Chu SC, Gramlich JL, Pride YB, Babendreier E, Chauhan D et al. Activation of the PI3K/mTOR pathway by BCR-ABL contributes to increased production of reactive oxygen species. Blood 2005; 105: 1717–1723.

    Article  CAS  PubMed  Google Scholar 

  7. Reddy MM, Fernandes MS, Salgia R, Levine RL, Griffin JD, Sattler M . NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia 2011; 25: 281–289.

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigues MS, Reddy MM, Sattler M . Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Antioxid Redox Signal 2008; 10: 1813–1848.

    Article  CAS  PubMed  Google Scholar 

  9. Reddy MM, Fernandes MS, Deshpande A, Weisberg E, Inguilizian HV, Abdel-Wahab O et al. The JAK2V617F oncogene requires expression of inducible phosphofructokinase/fructose-bisphosphatase 3 for cell growth and increased metabolic activity. Leukemia 2012; 26: 481–489.

    Article  CAS  PubMed  Google Scholar 

  10. Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 2012; 16: 751–764.

    Article  CAS  PubMed  Google Scholar 

  11. Pelletier J, Bellot G, Gounon P, Lacas-Gervais S, Pouyssegur J, Mazure NM . Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival. Front Oncol 2012; 2: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Seitz JF, Luganova IS . The biochemical identification of blood and bone marrow cells of patients with acute leukemia. Cancer Res 1968; 28: 2548–2555.

    CAS  PubMed  Google Scholar 

  13. Valentine WN, Follette JH, Lawrence JS . The glycogen content of human leukocytes in health and in various disease states. J Clin Invest 1953; 32: 251–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner R . Studies on the physiology of the white blood cell; the glycogen content of leukocytes in leukemia and polycythemia. Blood 1947; 2: 235–243.

    PubMed  Google Scholar 

  15. Browner MF, Nakano K, Bang AG, Fletterick RJ . Human muscle glycogen synthase cDNA sequence: a negatively charged protein with an asymmetric charge distribution. Proc Natl Acad Sci USA 1989; 86: 1443–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camici M, Ahmad Z, DePaoli-Roach AA, Roach PJ . Phosphorylation of rabbit liver glycogen synthase by multiple protein kinases. J Biol Chem 1984; 259: 2466–2473.

    CAS  PubMed  Google Scholar 

  17. Nuttall FQ, Gannon MC, Bai G, Lee EY . Primary structure of human liver glycogen synthase deduced by cDNA cloning. Arch Biochem Biophys 1994; 311: 443–449.

    Article  CAS  PubMed  Google Scholar 

  18. Parker GE, Pederson BA, Obayashi M, Schroeder JM, Harris RA, Roach PJ . Gene expression profiling of mice with genetically modified muscle glycogen content. Biochem J 2006; 395: 137–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouskila M, Hunter RW, Ibrahim AF, Delattre L, Peggie M, van Diepen JA et al. Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab 2010; 12: 456–466.

    Article  CAS  PubMed  Google Scholar 

  20. Pederson BA, Wilson WA, Roach PJ . Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 2004; 279: 13764–13768.

    Article  CAS  PubMed  Google Scholar 

  21. Preller A, Wilson CA, Quiroga-Roger D, Ureta T . Hexokinase and not glycogen synthase controls the flux through the glycogen synthesis pathway in frog oocytes. FEBS Lett 2013; 587: 2825–2831.

    Article  CAS  PubMed  Google Scholar 

  22. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  23. Rylatt DB, Aitken A, Bilham T, Condon GD, Embi N, Cohen P . Glycogen synthase from rabbit skeletal muscle. Amino acid sequence at the sites phosphorylated by glycogen synthase kinase-3, and extension of the N-terminal sequence containing the site phosphorylated by phosphorylase kinase. Eur J Biochem 1980; 107: 529–537.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Roach PJ . Inactivation of rabbit muscle glycogen synthase by glycogen synthase kinase-3. Dominant role of the phosphorylation of Ser-640 (site-3a). J Biol Chem 1993; 268: 23876–23880.

    CAS  PubMed  Google Scholar 

  25. Embi N, Rylatt DB, Cohen P . Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 1980; 107: 519–527.

    Article  CAS  PubMed  Google Scholar 

  26. Woodgett JR . Judging a protein by more than its name: GSK-3. Sci STKE 2001; 2001: re12.

    CAS  PubMed  Google Scholar 

  27. Carling D, Hardie DG . The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta 1989; 1012: 81–86.

    Article  CAS  PubMed  Google Scholar 

  28. Jorgensen SB, Nielsen JN, Birk JB, Olsen GS, Viollet B, Andreelli F et al. The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading. Diabetes 2004; 53: 3074–3081.

    Article  CAS  PubMed  Google Scholar 

  29. Burkewitz K, Zhang Y, Mair WB . AMPK at the Nexus of energetics and aging. Cell Metab 2014; 20: 10–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hardie DG . AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8: 774–785.

    Article  CAS  PubMed  Google Scholar 

  31. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2003; 2: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 1996; 271: 27879–27887.

    Article  CAS  PubMed  Google Scholar 

  33. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011; 472: 230–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002; 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  37. Yuan M, Breitkopf SB, Yang X, Asara JM . A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 2012; 7: 872–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, de la Iglesia N et al. Control of glycogen deposition. FEBS Lett 2003; 546: 127–132.

    Article  CAS  PubMed  Google Scholar 

  39. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  40. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sutherland C, Cohen P . The alpha-isoform of glycogen synthase kinase-3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase-activated protein kinase-1 in vitro. FEBS Lett 1994; 338: 37–42.

    Article  CAS  PubMed  Google Scholar 

  42. Sutherland C, Leighton IA, Cohen P . Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 1993; 296: 15–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beharry Z, Mahajan S, Zemskova M, Lin YW, Tholanikunnel BG, Xia Z et al. The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci USA 2011; 108: 528–533.

    Article  CAS  PubMed  Google Scholar 

  44. Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 2006; 3: 403–416.

    Article  CAS  PubMed  Google Scholar 

  45. Corton JM, Gillespie JG, Hawley SA, Hardie DG . 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 1995; 229: 558–565.

    Article  CAS  PubMed  Google Scholar 

  46. Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM et al. Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 2003; 102: 987–995.

    Article  CAS  PubMed  Google Scholar 

  47. Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C et al. The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood 2010; 116: 4262–4273.

    Article  CAS  PubMed  Google Scholar 

  48. Tolomeo M, Grimaudo S, Di Cristina A, Roberti M, Pizzirani D, Meli M et al. Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol 2005; 37: 1709–1726.

    Article  CAS  PubMed  Google Scholar 

  49. Vakana E, Altman JK, Glaser H, Donato NJ, Platanias LC . Antileukemic effects of AMPK activators on BCR-ABL-expressing cells. Blood 2011; 118: 6399–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA . Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 1998; 273: 35347–35354.

    Article  CAS  PubMed  Google Scholar 

  51. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab 2013; 17: 113–124.

    Article  CAS  PubMed  Google Scholar 

  52. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C . BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100: 3767–3775.

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez-Enriquez S, Torres-Marquez ME, Moreno-Sanchez R . Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch Biochem Biophys 2000; 375: 21–30.

    Article  CAS  PubMed  Google Scholar 

  54. Dworkin MB, Dworkin-Rastl E . Metabolic regulation during early frog development: glycogenic flux in Xenopus oocytes, eggs, and embryos. Dev Biol 1989; 132: 512–523.

    Article  CAS  PubMed  Google Scholar 

  55. Rousset M, Zweibaum A, Fogh J . Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins. Cancer Res 1981; 41: 1165–1170.

    CAS  PubMed  Google Scholar 

  56. Fang M, Shen Z, Huang S, Zhao L, Chen S, Mak TW et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell 2010; 143: 711–724.

    Article  CAS  PubMed  Google Scholar 

  57. McBride A, Ghilagaber S, Nikolaev A, Hardie DG . The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab 2009; 9: 23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Melendez-Hevia E, Waddell TG, Shelton ED . Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 1993; 295: 477–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pederson BA, Cope CR, Schroeder JM, Smith MW, Irimia JM, Thurberg BL et al. Exercise capacity of mice genetically lacking muscle glycogen synthase: in mice, muscle glycogen is not essential for exercise. J Biol Chem 2005; 280: 17260–17265.

    Article  CAS  PubMed  Google Scholar 

  60. Pederson BA, Schroeder JM, Parker GE, Smith MW, DePaoli-Roach AA, Roach PJ . Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 2005; 54: 3466–3473.

    Article  CAS  PubMed  Google Scholar 

  61. Irimia JM, Meyer CM, Peper CL, Zhai L, Bock CB, Previs SF et al. Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knock-out mice. J Biol Chem 2010; 285: 12851–12861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee YC, Chang CJ, Bali D, Chen YT, Yan YT . Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet 2011; 20: 455–465.

    Article  CAS  PubMed  Google Scholar 

  63. Carretero J, Medina PP, Blanco R, Smit L, Tang M, Roncador G et al. Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 2007; 26: 1616–1625.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Institutes of Health grant CA134660 (MS), CA6696 (JDG) and by the Gloria Spivak Faculty Advancement Fund (MS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sattler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanot, H., Reddy, M., Nonami, A. et al. Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells. Leukemia 29, 1555–1563 (2015). https://doi.org/10.1038/leu.2015.46

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.46

This article is cited by

Search

Quick links