Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplastic syndrome

Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes

Abstract

Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings confirmed in a validation cohort. When parsed by VAF, TP53 VAF predicted for complex cytogenetics in both the training (P=0.001) and validation set (P<0.0001). MDS patients with a TP53 VAF > 40% had a median overall survival (OS) of 124 days versus an OS that was not reached in patients with VAF <20% (hazard ratio (HR), 3.52; P=0.01) with validation in an independent cohort (HR, 4.94, P=0.01). TP53 VAF further stratified distinct prognostic groups independent of clinical prognostic scoring systems (P=0.0005). In multivariate analysis, only a TP53 VAF >40% was an independent covariate (HR, 1.61; P<0.0001). In addition, SRSF2 VAF predicted for monocytosis (P=0.003), RUNX1 VAF with thrombocytopenia (P=0.01) and SF3B1 with ringed sideroblasts (P=0.001). Together, our study indicates that VAF should be incorporated in patient management and risk stratification in MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122: 3616–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  PubMed  Google Scholar 

  3. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malcovati L, Papaemmanuil E, Ambaglio I, Elena C, Galli A, Della Porta MG et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood 2014; 124: 1513–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jonveaux P, Fenaux P, Quiquandon I, Pignon JM, Lai JL, Loucheux-Lefebvre MH et al. Mutations in the p53 gene in myelodysplastic syndromes. Oncogene 1991; 6: 2243–2247.

    CAS  PubMed  Google Scholar 

  6. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl Med 2011; 364: 2496–2506.

    Article  CAS  Google Scholar 

  7. Kulasekararaj AG, Smith AE, Mian SA, Mohamedali AM, Krishnamurthy P, Lea NC et al. TP53 mutations in myelodysplastic syndrome are strongly correlated with aberrations of chromosome 5, and correlate with adverse prognosis. Br J Haematol 2013; 160: 660–672.

    Article  CAS  PubMed  Google Scholar 

  8. Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol 2014; 32: 2691–2698.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bejar R, Lord A, Stevenson K, Bar-Natan M, Perez-Ladaga A, Zaneveld J et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 2014; 124: 2705–2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bally C, Ades L, Renneville A, Sebert M, Eclache V, Preudhomme C et al. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk Res 2014; 38: 751–755.

    Article  CAS  PubMed  Google Scholar 

  11. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Passamonti F, Rumi E . Clinical relevance of JAK2 (V617F) mutant allele burden. Haematologica 2009; 94: 7–10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937–951.

    Article  CAS  PubMed  Google Scholar 

  14. Mohamedali AM, Gaken J, Ahmed M, Malik F, Smith AE, Best S et al. High concordance of genomic and cytogenetic aberrations between peripheral blood and bone marrow in myelodysplastic syndrome (MDS). Leukemia 2015; 29: 1928–1938.

    Article  CAS  PubMed  Google Scholar 

  15. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405–424.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jadersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Gohring G et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 2011; 29: 1971–1979.

    Article  PubMed  Google Scholar 

  17. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol 2013; 31: 2428–2436.

    Article  CAS  PubMed  Google Scholar 

  18. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118: 6239–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mian SA, Smith AE, Kulasekararaj AG, Kizilors A, Mohamedali AM, Lea NC et al. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome. Haematologica 2013; 98: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cazzola M, Della Porta MG, Malcovati L . The genetic basis of myelodysplasia and its clinical relevance. Blood 2013; 122: 4021–4034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25: 379–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC et al. RUNX1 gene mutation in primary myelodysplastic syndrome—the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol 2007; 139: 405–414.

    Article  CAS  PubMed  Google Scholar 

  23. Kita-Sasai Y, Horiike S, Misawa S, Kaneko H, Kobayashi M, Nakao M et al. International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br J Haematol 2001; 115: 309–312.

    Article  CAS  PubMed  Google Scholar 

  24. Horiike S, Kita-Sasai Y, Nakao M, Taniwaki M . Configuration of the TP53 gene as an independent prognostic parameter of myelodysplastic syndrome. Leuk Lymphoma 2003; 44: 915–922.

    Article  CAS  PubMed  Google Scholar 

  25. Bejar R, Papaemmanuil E, Haferlach T, Garcia-Manero G, Maciejewski JP, Sekeres MA et al. TP53 mutation status divides MDS patients with complex karyotypes into distinct prognostic risk groups: Analysis of combined datasets from the International Working Group for MDS-Molecular Prognosis Committee. 56th ASH Annual Meeting and Exposition 6-9 December 2014; vol. 124: San Francisco, CA, pp 532–532.

    Google Scholar 

  26. Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K . TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood 1995; 85: 2189–2193.

    CAS  PubMed  Google Scholar 

  27. Pellagatti A, Roy S, Genua CD, Burns A, McGraw K, Valletta S et al. Targeted re-sequencing analysis of 31 genes commonly mutated in myeloid disorders in serial samples from myelodysplastic syndrome patients showing disease progression. Leukemia 2016; 30: 248–250.

    Article  CAS  Google Scholar 

  28. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New Engl J Med 2014; 371: 2477–2487.

    Article  PubMed  Google Scholar 

  29. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488–2498.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014; 20: 1472–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Padron.

Ethics declarations

Competing interests

CV, MM, SN and JH are employees of Genoptix, Inc., a Novartis company and own stock in the company. The other authors declare no conflict of interest.

Additional information

Author contributions

DS and EP designed the research, analyzed data and wrote the paper. MM, SN, KM, NA, AS and AK collected the data and gave final approval. RK, TC and SG analyzed data and gave the final approval. CV and JH collected the data, reviewed the paper and gave the final approval. JL, GM and AL reviewed the paper and gave the final approval.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallman, D., Komrokji, R., Vaupel, C. et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia 30, 666–673 (2016). https://doi.org/10.1038/leu.2015.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.304

This article is cited by

Search

Quick links