Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

Cytoplasmic myosin-exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

Abstract

The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin-exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy-chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  PubMed  Google Scholar 

  2. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Agathangelidis A, Darzentas N, Hadzidimitriou A, Brochet X, Murray F, Yan XJ et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012; 119: 4467–4475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 2008; 14: 665–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, Messmer BT et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 2005; 115: 1636–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lanemo Myhrinder A, Hellqvist E, Sidorova E, Soderberg A, Baxendale H, Dahle C et al. A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 2008; 111: 3838–3848.

    Article  PubMed  Google Scholar 

  7. Chu CC, Catera R, Hatzi K, Yan X-J, Zhang L, Wang XB et al. Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize non-muscle myosin heavy chain IIA. Blood 2008; 112: 5122–5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kipps TJ, Carson DA . Autoantibodies in chronic lymphocytic leukemia and related systemic autoimmune diseases. Blood 1993; 81: 2475–2487.

    CAS  PubMed  Google Scholar 

  9. Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 2012; 489: 309–312.

    Article  PubMed  Google Scholar 

  10. Rosen A, Murray F, Evaldsson C, Rosenquist R . Antigens in chronic lymphocytic leukemia—implications for cell origin and leukemogenesis. Semin Cancer Biol 2010; 20: 400–409.

    Article  CAS  PubMed  Google Scholar 

  11. Bachmann AS, Howard JP, Vogel CW . Actin-binding protein filamin A is displayed on the surface of human neuroblastoma cells. Cancer Sci 2006; 97: 1359–1365.

    Article  CAS  PubMed  Google Scholar 

  12. Moisan E, Girard D . Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J Leukoc Biol 2006; 79: 489–498.

    Article  CAS  PubMed  Google Scholar 

  13. Mannherz HG, Gonsior SM, Gremm D, Wu X, Pope BJ, Weeds AG . Activated cofilin colocalises with Arp2/3 complex in apoptotic blebs during programmed cell death. Eur J Cell Biol 2005; 84: 503–515.

    Article  CAS  PubMed  Google Scholar 

  14. Chu CC, Catera R, Zhang L, Didier S, Agagnina BM, Damle RN et al. Many chronic lymphocytic leukemia antibodies recognize apoptotic cells with exposed non-muscle myosin heavy chain IIA: implications for patient outcome and cell of origin. Blood 2010; 115: 3907–3915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davids MS, Brown JR . Targeting the B cell receptor pathway in chronic lymphocytic leukemia. Leuk Lymphoma 2012; 53: 2362–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med 2014; 371: 213–223.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014; 370: 997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012 19: 107–120.

    Google Scholar 

  20. Chu CC, Zhang L, Dhayalan A, Agagnina BM, Magli AR, Fraher G et al. Torque teno virus 10 isolated by genome amplification techniques from a patient with concomitant chronic lymphocytic leukemia and polycythemia vera. Mol Med 2011; 17: 1338–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghiotto F, Fais F, Valetto A, Albesiano E, Hashimoto S, Dono M et al. Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J Clin Invest 2004; 113: 1008–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lefranc MP, Giudicelli V, Ginestoux C, Jabado-Michaloud J, Folch G, Bellahcene F et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res 2009; 37: D1006–D1012.

    Article  CAS  PubMed  Google Scholar 

  23. Darzentas N, Hadzidimitriou A, Murray F, Hatzi K, Josefsson P, Laoutaris N et al. A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia 2010; 24: 125–132.

    Article  CAS  PubMed  Google Scholar 

  24. Weissman AM . Solubilization of Lymphocytes. In: Coligan JE, Bierer BE, Margulies DH, Shevach EM, Strober W (eds). Current Protocols in Immunology vol. 57. John Wiley & Sons, Inc.: New York, 2003; pp 8.1A.1–8.1A.9.

    Google Scholar 

  25. Mason JM, Naidu MD, Barcia M, Porti D, Chavan SS, Chu CC . Interleukin-four induced gene-1 (Il4i1 is a leukocyte L-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J Immunol 2004; 173: 4561–4567.

    Article  CAS  PubMed  Google Scholar 

  26. Gallagher S, Winston SE, Fuller SA, Hurrell JGR. Immunoblotting and Immunodetection. In: Coligan JE, Bierer BE, Margulies DH, Shevach EM, Strober W (eds). Current Protocols in Immunology vol. 83. John Wiley & Sons, Inc.: : New York, 2008; pp 8.10.11–18.10.28.

    Google Scholar 

  27. Sanchez-Alcazar JA, Ault JG, Khodjakov A, Schneider E . Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ 2000; 7: 1090–1100.

    Article  CAS  PubMed  Google Scholar 

  28. Kato M, Fukuda H, Nonaka T, Imajoh-Ohmi S . Cleavage of nonmuscle myosin heavy chain-A during apoptosis in human Jurkat T cells. J Biochem 2005; 137: 157–166.

    Article  CAS  PubMed  Google Scholar 

  29. Silverman GJ . Regulatory natural autoantibodies to apoptotic cells: pallbearers and protectors. Arthritis Rheum 2011; 63: 597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griffin DO, Holodick NE, Rothstein TL . Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 2011; 208: 67–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burger JA, Buggy JJ . Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765). Leuk Lymphoma 2013; 54: 2385–2391.

    Article  CAS  PubMed  Google Scholar 

  32. Mahajan S, Ghosh S, Sudbeck EA, Zheng Y, Downs S, Hupke M et al. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-beta-methyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 1999; 274: 9587–9599.

    Article  CAS  PubMed  Google Scholar 

  33. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011; 117: 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010; 116: 2078–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jamieson S, Flanagan JU, Kolekar S, Buchanan C, Kendall JD, Lee WJ et al. A drug targeting only p110alpha can block phosphoinositide 3-kinase signalling and tumour growth in certain cell types. Biochem J 2011; 438: 53–62.

    Article  CAS  PubMed  Google Scholar 

  36. Luo C, Laaja P . Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 2004; 9: 268–275.

    Article  CAS  PubMed  Google Scholar 

  37. So L, Yea SS, Oak JS, Lu M, Manmadhan A, Ke QH et al. Selective inhibition of phosphoinositide 3-kinase p110alpha preserves lymphocyte function. J Biol Chem 2013; 288: 5718–5731.

    Article  CAS  PubMed  Google Scholar 

  38. O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A . The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66: 311–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silverman GJ, Gronwall C, Vas J, Chen Y . Natural autoantibodies to apoptotic cell membranes regulate fundamental innate immune functions and suppress inflammation. Discov Med 2009; 8: 151–156.

    PubMed  Google Scholar 

  40. Defoiche J, Debacq C, Asquith B, Zhang Y, Burny A, Bron D et al. Reduction of B cell turnover in chronic lymphocytic leukaemia. Br J Haematol 2008; 143: 240–247.

    Article  PubMed  Google Scholar 

  41. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahoney JA, Rosen A . Apoptosis and autoimmunity. Curr Opin Immunol 2005; 17: 583–588.

    Article  CAS  PubMed  Google Scholar 

  43. Cerutti A, Cols M, Puga I . Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 2013; 13: 118–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chiorazzi N, Ferrarini M . Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 2011; 117: 1781–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Durig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen Y, Park YB, Patel E, Silverman GJ . IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol 2009; 182: 6031–6043.

    Article  CAS  PubMed  Google Scholar 

  47. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lam KP, Kuhn R, Rajewsky K . In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997; 90: 1073–1083.

    Article  CAS  PubMed  Google Scholar 

  49. Stadanlick JE, Kaileh M, Karnell FG, Scholz JL, Miller JP, Quinn WJ 3rd et al. Tonic B cell antigen receptor signals supply an NF-kappaB substrate for prosurvival BLyS signaling. Nat Immunol 2008; 9: 1379–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gobessi S, Laurenti L, Longo PG, Carsetti L, Berno V, Sica S et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 2009; 23: 686–697.

    Article  CAS  PubMed  Google Scholar 

  51. Binder M, Muller F, Frick M, Wehr C, Simon F, Leistler B et al. CLL B-cell receptors can recognize themselves: alternative epitopes and structural clues for autostimulatory mechanisms in CLL. Blood 2013; 121: 239–241.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Piers Patten, Barbara Sherry, Patricia Mongini, Sophia Yancopoulos and Rajendra N Damle (The Feinstein Institute for Medical Research) for helpful discussions; and Marlin Lee ‘Buzzer’ Hefti for advice, support and encouragement. Ibrutinib was generously provided by Dr Joseph Buggy (Pharmacyclics). This study was supported by grants from NIH (R01 CA81554, M01 RR01853), the Karches Foundation, the Muriel and Frank Feinberg Foundation, the Marks Foundation, the Jerome Levy Foundation, the Leon Levy Foundation and the Tebil Foundation, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C C Chu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Zhang, L., Magli, A. et al. Cytoplasmic myosin-exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability. Leukemia 30, 74–85 (2016). https://doi.org/10.1038/leu.2015.204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.204

Search

Quick links