Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study

Abstract

Deletions in IKZF1 are found in ~15% of children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL). There is strong evidence for the poor prognosis of IKZF1 deletions affecting exons 4–7 and exons 1–8, but evidence for the remaining 33% of cases harboring other variants of IKZF1 deletions is lacking. In an international multicenter study we analyzed the prognostic value of these rare variants in a case–control design. Each IKZF1-deleted case was matched to three IKZF1 wild-type controls based on cytogenetic subtype, treatment protocol, risk stratification arm, white blood cell count and age. Hazard ratios for the prognostic impact of rare IKZF1 deletions on event-free survival were calculated by matched pair Cox regression. Matched pair analysis for all 134 cases with rare IKZF1 deletions together revealed a poor prognosis (P<0.001) that was evident in each risk stratification arm. Rare variant types with the most unfavorable event-free survival were DEL 2–7 (P=0.03), DEL 2–8 (P=0.002) and DEL-Other (P<0.001). The prognosis of each type of rare variant was equal or worse compared with the well-known major DEL 4–7 and DEL 1–8 IKZF1 deletion variants. We therefore conclude that all variants of rare IKZF1 deletions are associated with an unfavorable prognosis in pediatric BCP-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  Google Scholar 

  2. Moricke A, Zimmermann M, Reiter A, Henze G, Schrauder A, Gadner H et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010; 24: 265–284.

    Article  CAS  Google Scholar 

  3. Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia 2011; 25: 254–258.

    Article  CAS  Google Scholar 

  4. van der Veer A, Waanders E, Pieters R, Willemse ME, Van Reijmersdal SV, Russell LJ et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013; 122: 2622–2629.

    Article  CAS  Google Scholar 

  5. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470–480.

    Article  CAS  Google Scholar 

  6. Kuiper RP, Waanders E, van der Velden VH, van Reijmersdal SV, Venkatachalam R, Scheijen B et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010; 24: 1258–1264.

    Article  CAS  Google Scholar 

  7. Dorge P, Meissner B, Zimmermann M, Moricke A, Schrauder A, Bouquin JP et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2013; 98: 428–432.

    Article  Google Scholar 

  8. Yang YL, Hung CC, Chen JS, Lin KH, Jou ST, Hsiao CC et al. IKZF1 deletions predict a poor prognosis in children with B-cell progenitor acute lymphoblastic leukemia: a multicenter analysis in Taiwan. Cancer Sci 2011; 102: 1874–1881.

    Article  CAS  Google Scholar 

  9. Volejnikova J, Mejstrikova E, Dorge P, Meissner B, Zimmermannova O, Svojgr K et al. Ikaros (IKZF1) alterations and minimal residual disease at day 15 assessed by flow cytometry predict prognosis of childhood BCR/ABL-negative acute lymphoblastic leukemia. Pediatr Blood Cancer 2013; 60: 420–427.

    Article  CAS  Google Scholar 

  10. Olsson L, Ivanov Ofverholm I, Noren-Nystrom U, Zachariadis V, Nordlund J, Sjogren H et al. The clinical impact of IKZF1 deletions in paediatric B-cell precursor acute lymphoblastic leukaemia is independent of minimal residual disease stratification in Nordic Society for Paediatric Haematology and Oncology treatment protocols used between 1992 and 2013. Br J Haematol 2015; e-pub ahead of print 27 May 2015; doi:10.1111/bjh.13514.

    Article  CAS  Google Scholar 

  11. Clappier E, Grardel N, Bakkus M, Rapion J, De Moerloose B, Kastner P et al. IKZF1 deletion is an independent prognostic marker in childhood B-cell precursor acute lymphoblastic leukemia, and distinguishes patients benefiting from pulses during maintenance therapy: results of the EORTC Children's Leukemia Group study 58951. Leukemia 2015; e-pub ahead of print 8 June 2015; doi:10.1038/leu.2015.134.

    Article  CAS  Google Scholar 

  12. Kaufmann C, Yoshida T, Perotti EA, Landhuis E, Wu P, Georgopoulos K . A complex network of regulatory elements in Ikaros and their activity during hemo-lymphopoiesis. EMBO J 2003; 22: 2211–2223.

    Article  CAS  Google Scholar 

  13. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 1994; 79: 143–156.

    Article  CAS  Google Scholar 

  14. Yoshida T, Landhuis E, Dose M, Hazan I, Zhang J, Naito T et al. Transcriptional regulation of the Ikzf1 locus. Blood 2013; 122: 3149–3159.

    Article  CAS  Google Scholar 

  15. Yoshida T, Georgopoulos K . Ikaros fingers on lymphocyte differentiation. Int J Hematol 2014; 100: 220–229.

    Article  CAS  Google Scholar 

  16. Ferreiros-Vidal I, Carroll T, Taylor B, Terry A, Liang Z, Bruno L et al. Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. Blood 2013; 121: 1769–1782.

    Article  CAS  Google Scholar 

  17. Sun L, Liu A, Georgopoulos K . Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J 1996; 15: 5358–5369.

    Article  CAS  Google Scholar 

  18. Schjerven H, McLaughlin J, Arenzana TL, Frietze S, Cheng D, Wadsworth SE et al. Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros. Nat Immunol 2013; 14: 1073–1083.

    Article  CAS  Google Scholar 

  19. Bottardi S, Mavoungou L, Bourgoin V, Mashtalir N, Affar el B, Milot E . Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Mol Cell Biol 2013; 33: 3064–3076.

    Article  CAS  Google Scholar 

  20. Tokunaga K, Yamaguchi S, Iwanaga E, Nanri T, Shimomura T, Suzushima H et al. High frequency of IKZF1 genetic alterations in adult patients with B-cell acute lymphoblastic leukemia. Eur J Haematol 2013; 91: 201–208.

    Article  CAS  Google Scholar 

  21. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  Google Scholar 

  22. van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, Te Kronnie G, Harrison CJ et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood 2014; 123: 1691–1698.

    Article  CAS  Google Scholar 

  23. Palmi C, Valsecchi MG, Longinotti G, Silvestri D, Carrino V, Conter V et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica 2013; 98: 1226–1231.

    Article  CAS  Google Scholar 

  24. Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1999; 96: 680–685.

    Article  CAS  Google Scholar 

  25. Suzuki K, Ono R, Ohishi K, Masuya M, Kataoka I, Liu B et al. IKAROS isoform 6 enhances BCR-ABL1-mediated proliferation of human CD34+ hematopoietic cells on stromal cells. Int J Oncol 2012; 40: 53–62.

    CAS  PubMed  Google Scholar 

  26. Nishii K, Katayama N, Miwa H, Shikami M, Usui E, Masuya M et al. Non-DNA-binding Ikaros isoform gene expressed in adult B-precursor acute lymphoblastic leukemia. Leukemia 2002; 16: 1285–1292.

    Article  CAS  Google Scholar 

  27. Klein F, Feldhahn N, Herzog S, Sprangers M, Mooster JL, Jumaa H et al. BCR-ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene 2006; 25: 1118–1124.

    Article  CAS  Google Scholar 

  28. Dupuis A, Gaub MP, Legrain M, Drenou B, Mauvieux L, Lutz P et al. Biclonal and biallelic deletions occur in 20% of B-ALL cases with IKZF1 mutations. Leukemia 2013; 27: 503–507.

    Article  CAS  Google Scholar 

  29. Caye A, Beldjord K, Mass-Malo K, Drunat S, Soulier J, Gandemer V et al. Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia. Haematologica 2013; 98: 597–601.

    Article  CAS  Google Scholar 

  30. Palmi C, Lana T, Silvestri D, Savino A, Kronnie GT, Conter V et al. Impact of IKZF1 deletions on IKZF1 expression and outcome in Philadelphia chromosome negative childhood BCP-ALL. Reply to "Incidence and biological significance of IKZF1/Ikaros gene deletions in pediatric Philadelphia chromosome negative and Philadelphia chromosome positive B-cell precursor acute lymphoblastic leukemia". Haematologica 2013; 98: e164–e165.

    Article  CAS  Google Scholar 

  31. Mi JQ, Wang X, Yao Y, Lu HJ, Jiang XX, Zhou JF et al. Newly diagnosed acute lymphoblastic leukemia in China (II): prognosis related to genetic abnormalities in a series of 1091 cases. Leukemia 2012; 26: 1507–1516.

    Article  CAS  Google Scholar 

  32. Therneau T, Grambsch P . Modeling Survival Data: Extending the Cox Model. Springer-Verlag: New York, chapter 8: 2000.

    Book  Google Scholar 

  33. Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M et al. Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol 2014; 15: 283–293.

    Article  CAS  Google Scholar 

  34. Joshi I, Yoshida T, Jena N, Qi X, Zhang J, Van Etten RA et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nat Immunol 2014; 15: 294–304.

    Article  CAS  Google Scholar 

  35. Enshaei A, Schwab CJ, Konn ZJ, Mitchell CD, Kinsey SE, Wade R et al. Long-term follow-up of ETV6-RUNX1 ALL reveals that NCI risk, rather than secondary genetic abnormalities, is the key risk factor. Leukemia 2013; 27: 2256–2259.

    Article  CAS  Google Scholar 

  36. Clappier E, Auclerc MF, Rapion J, Bakkus M, Caye A, Khemiri A et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia 2014; 28: 70–77.

    Article  CAS  Google Scholar 

  37. Zaliova M, Zimmermannova O, Dorge P, Eckert C, Moricke A, Zimmermann M et al. ERG deletion is associated with CD2 and attenuates the negative impact of IKZF1 deletion in childhood acute lymphoblastic leukemia. Leukemia 2014; 28: 182–185.

    Article  CAS  Google Scholar 

  38. Payne KJ, Nicolas J-H, Zhu JY, Barsky LW, Crooks GM . Cutting edge: predominant expression of a novel Ikaros isoform in normal human hemopoiesis. J Immunol 2001; 167: 1867–1870.

    Article  CAS  Google Scholar 

  39. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009; 114: 2159–2167.

    Article  CAS  Google Scholar 

  40. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, Tubio J et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet 2014; 46: 116–125.

    Article  CAS  Google Scholar 

  41. Olsson L, Albitar F, Castor A, Behrendtz M, Biloglav A, Paulsson K et al. Cooperative genetic changes in pediatric B-cell precursor acute lymphoblastic leukemia with deletions or mutations of IKZF1. Genes Chromosomes Cancer 2015; 54: 315–325.

    Article  CAS  Google Scholar 

  42. Marshall GM, Dalla Pozza L, Sutton R, Ng A, de Groot-Kruseman HA, van der Velden VH et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 2013; 27: 1497–1503.

    Article  CAS  Google Scholar 

  43. Churchman M, Low J, Payne-Turner D, Chen S-C, Ma J, Althoff MJ et al. High content screening identifies synthetic lethality of retinoid receptor agonists in IKZF1-mutated BCR-ABL1 positive acute lymphoblastic leukemia. Blood 2013; 122: 172.

    Google Scholar 

  44. Papathanasiou P, Attema JL, Karsunky H, Hosen N, Sontani Y, Hoyne GF et al. Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 2009; 27: 3082–3092.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society (KWF, Grant EMCR 2007-3718 to MLdB and RP; Grant KUN 2009-4298 to RPK and PH), the Sophia Foundation for Scientific Research (SSWO, grant 658 to AvdV and MLdB), the Paediatric Oncology Foundation Rotterdam (to MLdB and RP), the European Union’s Seventh Framework Program (FP7/2007-2013) under the project European Network for Cancer research in Children and Adolescents (ENCCA, grant agreement HEALTH-F2-2011-261474 to MLdB and GC), the Center for Translational Molecular Medicine BioChip program (to MLdB), the National Health and Medical Research Council and Tour de Cure Foundation in Australia (to RS), the Polish Ministry of Education and Science (project NN407 137738 and project NN407 254440 to WM), the Polpharma Scientific Foundation (to WM), Anniversary of the Austrian National Bank (ÖNB, Grant 14133 to KN), Italian Association for Cancer Research (AIRC), the Czech Ministry of Health (NT 12397-4 to EF; NT 13170-4 to MZa) and Fondazione Cariplo and MIUR (to GC). AVM, CJS, AE and AV thank Leukaemia & Lymphoma Research (LLR) for financial support and the UK Cancer Cytogenetic Group (UKCCG) laboratories and the LLR Childhood Leukaemia Cell Bank for providing data and samples.

Author contributions

MLdB, AvdV, MZi, AVM and RP designed this study. Patients’ samples and follow-up data were supplied by HAdGK, PH, JT, MH, MdSPdO, WM, AA, RS, AE, MSc, AV, GC, VC, MZi and AVM. Multiplex ligation-dependent probe amplification assays were performed by AvdV, ES, RPK, MZa, EF, ME, TS, KN, AA, NV, CJS, MSt and CP. AvdV, JMB, DR, MF, HAdGK, MZi, AVM and MLdB performed the statistical analysis of data. The manuscript was written and approved by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L den Boer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boer, J., van der Veer, A., Rizopoulos, D. et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study. Leukemia 30, 32–38 (2016). https://doi.org/10.1038/leu.2015.199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.199

This article is cited by

Search

Quick links