Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Independent development of lymphoid and histiocytic malignancies from a shared early precursor

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Pileri SA, Grogan TM, Harris NL, Banks P, Campo E, Chan JK et al. Tumours of histiocytes and accessory dendritic cells: an immunohistochemical approach to classification from the International Lymphoma Study Group based on 61 cases. Histopathology 2002; 41: 1–29.

    Article  CAS  Google Scholar 

  2. Vos JA, Abbondanzo SL, Barekman CL, Andriko JW, Miettinen M, Aguilera NS . Histiocytic sarcoma: a study of five cases including the histiocyte marker CD163. Mod Pathol 2005; 18: 693–704.

    Article  Google Scholar 

  3. Weitzman S, Jaffe R . Uncommon histiocytic disorders: the non-Langerhans cell histiocytoses. Pediatr Blood Cancer 2005; 45: 256–264.

    Article  Google Scholar 

  4. Pagni F, Fazio G, Zannella S, Spinelli M, De Angelis C, Cusi C et al. The role of PAX5 and C/EBP alpha/beta in atypical non-Langerhans cell histiocytic tumor post acute lymphoblastic leukemia. Leukemia 2014; 28: 1377–1379.

    Article  CAS  Google Scholar 

  5. Feldman AL, Minniti C, Santi M, Downing JR, Raffeld M, Jaffe ES . Histiocytic sarcoma after acute lymphoblastic leukaemia: a common clonal origin. Lancet Oncol 2004; 5: 248–250.

    Article  Google Scholar 

  6. Kumar R, Khan SP, Joshi DD, Shaw GR, Ketterling RP, Feldman AL . Pediatric histiocytic sarcoma clonally related to precursor B-cell acute lymphoblastic leukemia with homozygous deletion of CDKN2A encoding p16INK4A. Pediatr Blood Cancer 2011; 56: 307–310.

    Article  Google Scholar 

  7. McClure R, Khoury J, Feldman A, Ketterling R . Clonal relationship between precursor B-cell acute lymphoblastic leukemia and histiocytic sarcoma: a case report and discussion in the context of similar cases. Leuk Res 2010; 34: e71–e73.

    Article  Google Scholar 

  8. Brunner P, Rufle A, Dirnhofer S, Lohri A, Willi N, Cathomas G et al. Follicular lymphoma transformation into histiocytic sarcoma: indications for a common neoplastic progenitor. Leukemia 2014; 28: 1937–1940.

    Article  CAS  Google Scholar 

  9. Dorantes-Acosta E, Pelayo R . Lineage switching in acute leukemias: a consequence of stem cell plasticity? Bone Marrow Res 2012; 2012: 406796.

    Article  Google Scholar 

  10. Kawamoto H, Ikawa T, Masuda K, Wada H, Katsura Y . A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 2010; 238: 23–36.

    Article  CAS  Google Scholar 

  11. Slamova L, Starkova J, Fronkova E, Zaliova M, Reznickova L, van Delft FW et al. CD2-positive B-cell precursor acute lymphoblastic leukemia with an early switch to the monocytic lineage. Leukemia 2014; 28: 609–620.

    Article  CAS  Google Scholar 

  12. Cobaleda C, Jochum W, Busslinger M . Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 2007; 449: 473–477.

    Article  CAS  Google Scholar 

  13. Xie H, Ye M, Feng R, Graf T . Stepwise reprogramming of B cells into macrophages. Cell 2004; 117: 663–676.

    Article  CAS  Google Scholar 

  14. Yu D, Allman D, Goldschmidt MH, Atchison ML, Monroe JG, Thomas-Tikhonenko A . Oscillation between B-lymphoid and myeloid lineages in Myc-induced hematopoietic tumors following spontaneous silencing/reactivation of the EBF/Pax5 pathway. Blood 2003; 101: 1950–1955.

    Article  CAS  Google Scholar 

  15. Carrasco DR, Fenton T, Sukhdeo K, Protopopova M, Enos M, You MJ et al. The PTEN and INK4A/ARF tumor suppressors maintain myelolymphoid homeostasis and cooperate to constrain histiocytic sarcoma development in humans. Cancer Cell 2006; 9: 379–390.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof Dr Jacques van Dongen and Prof Dr Robert Arceci for their expert advice on the treatment of this patient. We thank Dr Charles Mullighan for helpful discussions and Ingrid Vogelaar, Christian Gilissen and Eugène Verwiel for technical assistance. We thank the members of the Genomic Disorders Group Nijmegen and the Radboud Genomics Technology Center for their technical support. EW is a KWF fellow from the Dutch Cancer Society (KUN2012-5366), AH is supported by the Netherlands Organization for Health Research and Development (ZonMW 916-12-095) and RPK is funded by Stichting Kinderen Kankervrij (KiKa project 150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M W M te Loo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waanders, E., Hebeda, K., Kamping, E. et al. Independent development of lymphoid and histiocytic malignancies from a shared early precursor. Leukemia 30, 955–958 (2016). https://doi.org/10.1038/leu.2015.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.193

This article is cited by

Search

Quick links