Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL

Abstract

Dysregulated T-cell leukemia/lymphoma-1A (TCL1A), a modulator in B-cell receptor (BCR) signaling, is causally implicated in chronic lymphocytic leukemia (CLL). However, the mechanisms of the perturbed TCL1A regulation are largely unknown. To characterize TCL1A-upstream networks, we functionally screened for TCL1A-repressive micro-RNAs (miRs) and their transcriptional regulators. We identified the novel miR-484 to target TCL1A’s 3′-UTR and to be downregulated in CLL. In chromatin immunoprecipitations and reporter assays, the oncogenic transcription factor of myeloid cells, EVI1, bound and activated the miR-484 promoter. Most common in CLL was a pan-EVI1 transcript variant. EVI1 protein expression revealed distinct normal-tissue and leukemia-associated patterns of EVI1/TCL1A co-regulation. EVI1 levels were particularly low in TCL1A-high CLL or such cellular subsets. Global gene expression profiles from a 337-patient set linked EVI1 networks to BCR signaling and cell survival via TCL1A, BTK and other molecules of relevance in CLL. Enforced EVI1, as did miR-484, repressed TCL1A. Furthermore, it reduced phospho-kinase levels, impaired cell survival, mitigated BCR-induced Ca-flux and diminished the in vitro ibrutinib response. Moreover, TCL1A and EVI1 showed a strongly interactive hazard prediction in prospectively treated patients. Overall, we present regressive EVI1 as a novel regulatory signature in CLL. Through enhanced TCL1A and other EVI1-targeted hallmarks of CLL, this contributes to an aggressive cellular and clinical phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  Google Scholar 

  2. Herling M, Patel KA, Khalili J, Schlette E, Kobayashi R, Medeiros LJ et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 2006; 20: 280–285.

    Article  CAS  Google Scholar 

  3. Herling M, Patel KA, Weit N, Lilienthal N, Hallek M, Keating MJ et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 2009; 114: 4675–4686.

    Article  CAS  Google Scholar 

  4. Pekarsky Y, Koval A, Hallas C, Bichi R, Tresini M, Malstrom S et al. Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc Natl Acad Sci USA 2000; 97: 3028–3033.

    Article  CAS  Google Scholar 

  5. Laine J, Künstle G, Obata T, Sha M, Noguchi M . The protooncogene TCL1 is an Akt kinase coactivator. Mol Cell 2000; 6: 395–407.

    Article  CAS  Google Scholar 

  6. Pekarsky Y, Palamarchuk A, Maximov V, Efanov A, Nazaryan N, Santanam U et al. Tcl1 functions as a transcriptional regulator and is directly involved in the pathogenesis of CLL. Proc Natl Acad Sci USA 2008; 105: 19643–19648.

    Article  CAS  Google Scholar 

  7. Sivina M, Hartmann E, Vasyutina E, Boucas JM, Breuer A, Keating MJ et al. Stromal cells modulate TCL1 expression, interacting AP-1 components and TCL1-targeting micro-RNAs in chronic lymphocytic leukemia. Leukemia 2012; 26: 1812–1820.

    Article  CAS  Google Scholar 

  8. Gaudio E, Spizzo R, Paduano F, Luo Z, Efanov A, Palamarchuk A et al. Tcl1 interacts with Atm and enhances NF-κB activation in hematologic malignancies. Blood 2012; 119: 180–187.

    Article  CAS  Google Scholar 

  9. Herling M, Patel KA, Teitell MA, Konopleva M, Ravandi F, Kobayashi R et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood 2008; 111: 328–337.

    Article  CAS  Google Scholar 

  10. Fink SR, Paternoster SF, Smoley SA, Flynn HC, Geyer SM, Shanafelt TD et al. Fluorescent-labeled DNA probes applied to novel biological aspects of B-cell chronic lymphocytic leukemia. Leuk Res 2005; 29: 253–262.

    Article  CAS  Google Scholar 

  11. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66: 11590–11593.

    Article  CAS  Google Scholar 

  12. Cardinaud B, Moreilhon C, Marcet B, Robbe-Sermesant K, LeBrigand K, Mari B et al. miR-34b/miR-34c: a regulator of TCL1 expression in 11q- chronic lymphocytic leukaemia? Leukemia 2009; 23: 2174–2177.

    Article  CAS  Google Scholar 

  13. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  Google Scholar 

  14. Calin GA, Pekarsky Y, Croce CM . The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol 2007; 20: 425–437.

    Article  CAS  Google Scholar 

  15. Papakonstantinou N, Ntoufa S, Chartomatsidou E, Papadopoulos G, Hatzigeorgiou A, Anagnostopoulos A et al. Differential microRNA profiles and their functional implications in different immunogenetic subsets of chronic lymphocytic leukemia. Mol Med 2013; 19: 115–123.

    Article  CAS  Google Scholar 

  16. Mraz M, Kipps TJ . MicroRNAs and B cell receptor signaling in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54: 1836–1839.

    Article  CAS  Google Scholar 

  17. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  Google Scholar 

  18. Konantz M, André MC, Ebinger M, Grauer M, Wang H, Grzywna S et al. EVI-1 modulates leukemogenic potential and apoptosis sensitivity in human acute lymphoblastic leukemia. Leukemia 2013; 27: 56–65.

    Article  CAS  Google Scholar 

  19. Fedorchenko O, Stiefelhagen M, Peer-Zada AA, Barthel R, Mayer P, Eckei L et al. CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood 2013; 121: 4126–4136.

    Article  CAS  Google Scholar 

  20. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet 2010; 376: 1164–1174.

    Article  CAS  Google Scholar 

  21. Spessotto P, Zucchetto A, Degan M, Wasserman B, Danussi C, Bomben R et al. Laminin-332 (Laminin-5) is the major motility ligand for B cell chronic lymphocytic leukemia. Matrix Biol 2007; 26: 473–484.

    Article  CAS  Google Scholar 

  22. Haskó G, Linden J, Cronstein B, Pacher P . Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008; 7: 759–770.

    Article  Google Scholar 

  23. Goyama S, Kurokawa M . Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci 2009; 100: 990–995.

    Article  CAS  Google Scholar 

  24. Nucifora G, Laricchia-Robbio L, Senyuk V . EVI1 and hematopoietic disorders: history and perspectives. Gene 2006; 368: 1–11.

    Article  CAS  Google Scholar 

  25. Lanemo Myhrinder A, Hellqvist E, Bergh AC, Jansson M, Nilsson K, Hultman P et al. Molecular characterization of neoplastic and normal ‘sister’ lymphoblastoid B-cell lines from chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54: 1769–1779.

    Article  CAS  Google Scholar 

  26. Herling M, Patel KA, Hsi ED, Chang KC, Rassidakis GZ, Ford R et al. TCL1 in B-cell tumors retains its normal b-cell pattern of regulation and is a marker of differentiation stage. Am J Surg Pathol 2007; 31: 1123–1129.

    Article  Google Scholar 

  27. Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Dürig J et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 2012; 209: 2183–2198.

    Article  CAS  Google Scholar 

  28. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    Article  CAS  Google Scholar 

  29. Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA 2010; 107: 12210–12215.

    Article  CAS  Google Scholar 

  30. Lia M, Carette A, Tang H, Shen Q, Mo T, Bhagat G et al. Functional dissection of the chromosome 13q14 tumor-suppressor locus using transgenic mouse lines. Blood 2012; 119: 2981–2990.

    Article  CAS  Google Scholar 

  31. Efanov A, Zanesi N, Nazaryan N, Santanam U, Palamarchuk A, Croce CM et al. CD5+CD23+ leukemic cell populations in TCL1 transgenic mice show significantly increased proliferation and Akt phosphorylation. Leukemia 2010; 24: 970–975.

    Article  CAS  Google Scholar 

  32. Volinia S, Croce CM . Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci USA 2013; 110: 7413–7417.

    Article  CAS  Google Scholar 

  33. Moussay E, Wang K, Cho JH, van Moer K, Pierson S, Paggetti J et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2011; 108: 6573–6578.

    Article  CAS  Google Scholar 

  34. Ferrer G, Navarro A, Hodgson K, Aymerich M, Pereira A, Baumann T et al. MicroRNA expression in chronic lymphocytic leukemia developing autoimmune hemolytic anemia. Leuk Lymphoma 2013; 54: 2016–2022.

    Article  CAS  Google Scholar 

  35. Visone R, Veronese A, Rassenti LZ, Balatti V, Pearl DK, Acunzo M et al. miR-181b is a biomarker of disease progression in chronic lymphocytic leukemia. Blood 2011; 118: 3072–3079.

    Article  CAS  Google Scholar 

  36. Kuraishy AI, French SW, Sherman M, Herling M, Jones D, Wall R et al. TORC2 regulates germinal center repression of the TCL1 oncoprotein to promote B cell development and inhibit transformation. Proc Natl Acad Sci USA 2007; 104: 10175–10180.

    Article  CAS  Google Scholar 

  37. Buonamici S, Chakraborty S, Senyuk V, Nucifora G . The role of EVI1 in normal and leukemic cells. Blood Cells Mol Dis 2003; 31: 206–212.

    Article  CAS  Google Scholar 

  38. Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207–220.

    Article  CAS  Google Scholar 

  39. Kataoka K, Sato T, Yoshimi A, Goyama S, Tsuruta T, Kobayashi H et al. Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity. J Exp Med 2011; 208: 2403–2416.

    Article  CAS  Google Scholar 

  40. Gröschel S, Schlenk RF, Engelmann J, Rockova V, Teleanu V, Kühn MW et al. Deregulated expression of EVI1 defines a poor prognostic subset of MLL-rearranged acute myeloid leukemias: a study of the German-Austrian Acute Myeloid Leukemia Study Group and the Dutch-Belgian-Swiss HOVON/SAKK Cooperative Group. J Clin Oncol 2013; 31: 95–103.

    Article  Google Scholar 

  41. Shimada K, Tomita A, Minami Y, Abe A, Hind CK, Kiyoi H et al. CML cells expressing the TEL/MDS1/EVI1 fusion are resistant to imatinib-induced apoptosis through inhibition of BAD, but are resensitized with ABT-737. Exp Hematol 2012; 40: 724–737, e2.

    Article  CAS  Google Scholar 

  42. Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA 2011; 305: 59–67.

    Article  CAS  Google Scholar 

  43. Hothorn T, Zeileis A . Generalized maximally selected statistics. Biometrics 2008; 64: 1263–1269.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the help in CLL sample acquisition by T Landwehr of the Biobank of the Center of Integrated Oncology Cologne-Bonn funded by the German Cancer Aid. The German Cancer Aid primarily supported this work by a Max-Eder award to MHe. The Köln Fortune Program provided start-up funds to EV. Funding by the CECAD initiative supported MHa and MHe. MHe also receives support by the German Research Foundation (DFG) under HE-3553/3-1 as part of the collaborative research group KFO-286. SS receives project-relevant funding from the DFG (SFB1074, project B2), the Else-Kröner-Fresenius-Stiftung (2012_A146) and from F Hoffmann-La Roche.

Author Contributions

EV, JMB and MHe designed the experiments and analyzed the in vitro generated data. EV, JMB, ABr, CA and PM performed the in vitro experiments. JB performed gene expression profiling. Statistical data analysis on the CLL8 trial data set was performed by JB, GC, EV (gene expression, GSOA, heat-map generation) and by ABe (clinical and outcome associations). JB, MS, CL, ABe, HD, SS, MHa and MHe collected the clinical data. DB and AR acquired tissue samples, assisted in histological stainings and analyzed read-outs. EV, ABe and MHe wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Herling.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasyutina, E., Boucas, J., Bloehdorn, J. et al. The regulatory interaction of EVI1 with the TCL1A oncogene impacts cell survival and clinical outcome in CLL. Leukemia 29, 2003–2014 (2015). https://doi.org/10.1038/leu.2015.114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.114

This article is cited by

Search

Quick links