Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

A novel recurrent EP300–ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Pui CH, Mullighan CG, Evans WE, Relling MV . Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 2012; 120: 1165–1174.

    Article  CAS  Google Scholar 

  2. Inaba H, Greaves M, Mullighan CG . Acute lymphoblastic leukaemia. Lancet 2013; 381: 1943–1955.

    Article  Google Scholar 

  3. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22: 153–166.

    Article  CAS  Google Scholar 

  4. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371: 1005–1015.

    Article  Google Scholar 

  5. Lilljebjörn H, Agerstam H, Orsmark-Pietras C, Rissler M, Ehrencrona H, Nilsson L et al. RNA-seq identifies clinically relevant fusion genes in leukemia including a novel MEF2D/CSF1R fusion responsive to imatinib. Leukemia 2013; 28: 977–979.

    Article  Google Scholar 

  6. Blobel GA . CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 2000; 95: 745–755.

    CAS  PubMed  Google Scholar 

  7. Bidwell JP, Torrungruang K, Alvarez M, Rhodes SJ, Shah R, Jones DR et al. Involvement of the nuclear matrix in the control of skeletal genes: the NMP1 (YY1), NMP2 (Cbfa1), and NMP4 (Nmp4/CIZ) transcription factors. Crit Rev Eukaryot Gene Expr 2001; 11: 279–297.

    Article  CAS  Google Scholar 

  8. Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997; 90: 4699–4704.

    CAS  PubMed  Google Scholar 

  9. Chaffanet M, Gressin L, Preudhomme C, Soenen‐Cornu V, Birnbaum D, Pébusque M . MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 2000; 28: 138–144.

    Article  CAS  Google Scholar 

  10. Martini A, La Starza R, Janssen H, Bilhou-Nabera C, Corveleyn A, Somers R et al. Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia. Cancer Res 2002; 62: 5408–5412.

    CAS  PubMed  Google Scholar 

  11. Zhong CH, Prima V, Liang X, Frye C, McGavran L, Meltesen L et al. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia 2008; 22: 723–729.

    Article  CAS  Google Scholar 

  12. Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D . Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 2013; 20: 1040–1046.

    Article  CAS  Google Scholar 

  13. Manabe A, Ohara A, Hasegawa D, Koh K, Saito T, Kiyokawa N et al. Significance of the complete clearance of peripheral blasts after 7 days of prednisolone treatment in children with acute lymphoblastic leukemia: the Tokyo Children's Cancer Study Group Study L99-15. Haematologica 2008; 93: 1155–1160.

    Article  CAS  Google Scholar 

  14. Kimbrel EA, Lemieux ME, Xia X, Davis TN, Rebel VI, Kung AL . Systematic in vivo structure-function analysis of p300 in hematopoiesis. Blood 2009; 114: 4804–4812.

    Article  CAS  Google Scholar 

  15. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 2011; 471: 189–195.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K Itagaki, H Yagi, K Takeda and K Hayashi for their excellent data management and experimental assistance. We thank all members of the Committees of ALL and of Research and Diagnosis of the TCCSG. We also thank K Hayashi and LSI Medience Corporation for their excellent FISH analysis. This work was supported in part by a Health and Labour Sciences Research Grant (3rd-term comprehensive 10-year strategy for cancer control H22-011), the Grant of the National Center for Child Health and Development (26-20) and the Advanced research for medical products Mining Programme of the National Institute of Biomedical Innovation (NIBIO, 10-41, -42, -43, -44, -45). The above funding sources had no role in the collection, analysis or interpretation of the results, or in the writing of the manuscript and decision to submit it.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to N Kiyokawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gocho, Y., Kiyokawa, N., Ichikawa, H. et al. A novel recurrent EP300–ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia. Leukemia 29, 2445–2448 (2015). https://doi.org/10.1038/leu.2015.111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.111

This article is cited by

Search

Quick links