Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Versican upregulation in Sézary cells alters growth, motility and resistance to chemotherapy

Abstract

Sézary syndrome (SéS) represents a leukemic variant of cutaneous T-cell lymphoma, whose etiology is still unknown. To identify dyregulated genes in SéS, we performed transcriptional profiling of Sézary cells (SCs) obtained from peripheral blood of patients with SéS. We identified versican as the highest upregulated gene in SCs. VCAN is an extracellular matrix proteoglycan, which is known to interfere with different cellular processes in cancer. Versican isoform V1 was the most commonly upregulated isoform in SCs. Using a lentiviral plasmid, we overexpressed versican V1 isoform in lymphoid cell lines, which altered their growth behavior by promoting formation of smaller cell clusters and by increasing their migratory capacity towards stromal cell-derived factor 1, thus promoting skin homing. Versican V1 overexpression exerted an inhibitory effect on cell proliferation, partially by promoting activation-induced cell death. Furthermore, V1 overexpression in lymphoid cell lines increased their sensitivity to doxorubicin and gemcitabine. In conclusion, we confirm versican as one of the dysregulated genes in SéS and describe its effects on the biology of SCs. Although versican overexpression confers lymphoid cells with increased migratory capacity, it also makes them more sensitive to activation-induced cell death and some chemotherapeutics, which could be exploited further for therapeutic purposes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Talpur R, Singh L, Daulat S, Liu P, Seyfer S, Trynosky T et al. Long-term outcomes of 1,263 patients with mycosis fungoides and Sézary syndrome from 1982 to 2009. Clin Cancer Res 2012; 18: 5051–5060.

    Article  CAS  Google Scholar 

  2. Dulmage BO, Geskin LJ . Lessons learned from gene expression profiling of cutaneous T-cell lymphoma. Br J Dermatol 2013; 169: 1188–1197.

    Article  CAS  Google Scholar 

  3. Kari L, Loboda A, Nebozhyn M, Rook AH, Vonderheid EC, Nichols C et al. Classification and prediction of survival in patients with the leukemic phase of cutaneous T cell lymphoma. J Exp Med 2003; 197: 1477–1488.

    Article  CAS  Google Scholar 

  4. van Doorn R, Dijkman R, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EM, Willemze R et al. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res 2004; 64: 5578–5586.

    Article  CAS  Google Scholar 

  5. Cattaruzza S, Schiappacassi M, Ljungberg-Rose A, Spessotto P, Perissinotto D, Morgelin M et al. Distribution of PG-M/versican variants in human tissues and de novo expression of isoform V3 upon endothelial cell activation, migration, and neoangiogenesis in vitro. J Biol Chem 2002; 277: 47626–47635.

    Article  CAS  Google Scholar 

  6. Touab M, Villena J, Barranco C, Arumi-Uria M, Bassols A . Versican is differentially expressed in human melanoma and may play a role in tumor development. Am J Pathol 2002; 160: 549–557.

    Article  CAS  Google Scholar 

  7. LaPierre DP, Lee DY, Li S-Z, Xie Y-Z, Zhong L, Sheng W et al. The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res 2007; 67: 4742–4750.

    Article  CAS  Google Scholar 

  8. Du WW, Yang W, Yee AJ . Roles of versican in cancer biology–tumorigenesis, progression and metastasis. Histol Histopathol 2013; 28: 701–713.

    CAS  PubMed  Google Scholar 

  9. Evanko SP, Potter-Perigo S, Bollyky PL, Nepom GT, Wight TN . Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration. Matrix Biol 2012; 31: 90–100.

    Article  CAS  Google Scholar 

  10. Wight TN, Kang I, Merrilees MJ . Versican and the control of inflammation. Matrix Biol 2014; 35: 152–161.

    Article  CAS  Google Scholar 

  11. Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ . The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 2009; 28: 233–245.

    Article  Google Scholar 

  12. Wight TN, Kinsella MG, Evanko SP, Potter-Perigo S, Merrilees MJ . Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta 2014; 1840: 2441–2451.

    Article  CAS  Google Scholar 

  13. Kim YH, Willemze R, Pimpinelli N, Whittaker S, Olsen EA, Ranki A et al. TNM classification system for primary cutaneous lymphomas other than mycosis fungoides and Sézary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the European Organization of Reseace and Treatment of Cancer (EORTC). Blood 2007; 110: 479–484.

    Article  CAS  Google Scholar 

  14. Dummer R, Nestle FO, Niederer E, Ludwig E, Laine E, Grundmann H et al. Genotypic, phenotypic and functional analysis of CD4+CD7+ and CD4+CD7- T lymphocyte subsets in Sezary syndrome. Arch Dermatol Res 1999; 291: 307–311.

    Article  CAS  Google Scholar 

  15. Schwab C, Willers J, Niederer E, Ludwig E, Kundig T, Grob P et al. The use of anti-T-cell receptor-Vbeta antibodies for the estimation of treatment success and phenotypic characterization of clonal T-cell populations in cutaneous T-cell lymphomas. Br J Haematol 2002; 118: 1019–1026.

    Article  CAS  Google Scholar 

  16. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen P, Thestrup-Pedersen K . Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. In Vitro Cell Dev Biol 1992; 28: 161–167.

    Article  Google Scholar 

  17. Urosevic M, Fujii K, Calmels B, Laine E, Kobert N, Acres B et al. Type I IFN innate immune response to adenovirus-mediated IFN-gamma gene transfer contributes to the regression of cutaneous lymphomas. J Clin Invest 2007; 117: 2834–2846.

    Article  CAS  Google Scholar 

  18. Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S et al. A travel guide to Cytoscape plugins. Nat Methods 2012; 9: 1069–1076.

    Article  CAS  Google Scholar 

  19. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 2010; 26: 2927–2928.

    Article  CAS  Google Scholar 

  20. Kumar M, Keller B, Makalou N, Sutton RE . Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 2001; 12: 1893–1905.

    Article  CAS  Google Scholar 

  21. Lamant Le Reyniès A, Duplantier M-M, Rickman DS, Sabourdy F, Giuriato S et al. dGene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 2007; 109: 2156–2164.

    Article  Google Scholar 

  22. Fang H, Liu J, Guo D, Liu P, Zhao Y . Epigenetic regulation of putative tumor suppressor TGFBI in human leukemias. Chin Med J (Engl) 2014; 127: 1645–1650.

    CAS  Google Scholar 

  23. Liu C, Li B, Cheng Y, Lin J, Hao J, Zhang S et al. MiR-21 plays an important role in radiation induced carcinogenesis in BALB/c mice by directly targeting the tumor suppressor gene Big-h3. Int J Biol Sci 2011; 7: 347–363.

    Article  CAS  Google Scholar 

  24. Kondratiev S, Duraisamy S, Unitt CL, Green MR, Pinkus GS, Shipp MA et al. Aberrant expression of the dendritic cell marker TNFAIP2 by the malignant cells of Hodgkin lymphoma and primary mediastinal large B-cell lymphoma distinguishes these tumor types from morphologically and phenotypically similar lymphomas. Am J Surg Pathol 2011; 35: 1531–1539.

    Article  Google Scholar 

  25. Teitell MA . The TCL1 family of oncoproteins: co-activators of transformation. Nat Rev Cancer 2005; 5: 640–648.

    Article  CAS  Google Scholar 

  26. Zhao A, Yang Z, Sun R, Grinchuk V, Netzel-Arnett S, Anglin IE et al. SerpinB2 is critical to Th2 immunity against enteric nematode infection. J Immunol 2013; 190: 5779–5787.

    Article  CAS  Google Scholar 

  27. Hirose J, Kawashima H, Yoshie O, Tashiro K, Miyasaka M . Versican interacts with chemokines and modulates cellular responses. J Biol Chem 2001; 276: 5228–5234.

    Article  CAS  Google Scholar 

  28. Cardoso LEM, Little PJ, Ballinger ML, Chan CK, Braun KR, Potter-Perigo S et al. Platelet-derived growth factor differentially regulates the expression and post-translational modification of versican by arterial smooth muscle cells through distinct protein kinase C and extracellular signal-regulated kinase pathways. J Biol Chem 2010; 285: 6987–6995.

    Article  CAS  Google Scholar 

  29. Nikitovic D, Zafiropoulos A, Katonis P, Tsatsakis A, Theocharis AD, Karamanos NK et al. Transforming growth factor-beta as a key molecule triggering the expression of versican isoforms v0 and v1, hyaluronan synthase-2 and synthesis of hyaluronan in malignant osteosarcoma cells. IUBMB Life 2006; 58: 47–53.

    Article  CAS  Google Scholar 

  30. Rahmani M, Read JT, Carthy JM, McDonald PC, Wong BW, Esfandiarei M et al. Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells. J Biol Chem 2005; 280: 13019–13028.

    Article  CAS  Google Scholar 

  31. Tufvesson E, Westergren-Thorsson G . Alteration of proteoglycan synthesis in human lung fibroblasts induced by interleukin-1beta and tumor necrosis factor-alpha. J Cell Biochem 2000; 77: 298–309.

    Article  CAS  Google Scholar 

  32. Alizadeh AA, Bohen SP, Lossos C, Martinez-Climent JA, Ramos JC, Cubedo-Gil E et al. Expression profiles of adult T-cell leukemia-lymphoma and associations with clinical responses to zidovudine and interferon alpha. Leuk Lymphoma 2010; 51: 1200–1216.

    Article  CAS  Google Scholar 

  33. Pise-Masison CA, Radonovich M, Dohoney K, Morris JC, O'Mahony D, Lee MJ et al. Gene expression profiling of ATL patients: compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability. Blood 2009; 113: 4016–4026.

    Article  CAS  Google Scholar 

  34. Rottiers P, Verfaillie T, Contreras R, Revets H, Desmedt M, Dooms H et al. Differentiation of EL4 lymphoma cells by tumoral environment is associated with inappropriate expression of the large chondroitin sulfate proteoglycan PG-M and the tumor-associated antigen HTgp-175. Int J Cancer 1998; 78: 503–510.

    Article  CAS  Google Scholar 

  35. Arslan F, Bosserhoff AK, Nickl-Jockschat T, Doerfelt A, Bogdahn U, Hau P . The role of versican isoforms V0/V1 in glioma migration mediated by transforming growth factor-beta2. Br J Cancer 2007; 96: 1560–1568.

    Article  CAS  Google Scholar 

  36. Su IJ, Kadin ME . Expression of growth factor/receptor genes in postthymic T cell malignancies. Am J Pathol 1989; 135: 439–445.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Petrey AC, de la Motte CA . Hyaluronan, a crucial regulator of inflammation. Front Immunol 2014; 5: 101.

    Article  Google Scholar 

  38. Gill S, Wight TN, Frevert CW . Proteoglycans: key regulators of pulmonary inflammation and the innate immune response to lung infection. Anat Rec (Hoboken) 2010; 293: 968–981.

    Article  CAS  Google Scholar 

  39. Wasa J, Nishida Y, Shinomura T, Isogai Z, Futamura N, Urakawa H et al. Versican V1 isoform regulates cell-associated matrix formation and cell behavior differentially from aggrecan in Swarm rat chondrosarcoma cells. Int J Cancer 2012; 130: 2271–2281.

    Article  CAS  Google Scholar 

  40. Wang W, Xu G-L, Jia W-D, Ma J-L, Li J-S, Ge Y-S et al. Ligation of TLR2 by versican: a link between inflammation and metastasis. Arch Med Res 2009; 40: 321–323.

    Article  Google Scholar 

  41. Lemire JM, Merrilees MJ, Braun KR, Wight TN . Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro. J Cell Physiol 2002; 190: 38–45.

    Article  CAS  Google Scholar 

  42. Sheng W, Wang G, Wang Y, Liang J, Wen J, Zheng P-S et al. The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 2005; 16: 1330–1340.

    Article  CAS  Google Scholar 

  43. Hernández D, Miquel-Serra L, Docampo MJ, Marco-Ramell A, Bassols A . Role of versican V0/V1 and CD44 in the regulation of human melanoma cell behavior. Int J Mol Med 2011; 27: 269–275.

    PubMed  Google Scholar 

  44. Onken J, Moeckel S, Leukel P, Leidgens V, Baumann F, Bogdahn U et al. Versican isoform V1 regulates proliferation and migration in high-grade gliomas. J Neurooncol 2014; 120: 73–83.

    Article  CAS  Google Scholar 

  45. Planelles V, Jowett JB, Li QX, Xie Y, Hahn B, Chen IS . Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol 1996; 70: 2516–2524.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Du WW, Yang BB, Shatseva TA, Yang BL, Deng Z, Shan SW et al. Versican G3 promotes mouse mammary tumor cell growth, migration, and metastasis by influencing EGF receptor signaling. PLoS One 2010; 5: e13828.

    Article  Google Scholar 

  47. Du WW, Yang BB, Yang BL, Deng Z, Fang L, Shan SW et al. Versican G3 domain modulates breast cancer cell apoptosis: a mechanism for breast cancer cell response to chemotherapy and EGFR therapy. PLoS One 2011; 6: e26396.

    Article  CAS  Google Scholar 

  48. Klemke C-D, Brenner D, Weiβ E-M, Schmidt M, Leverkus M, Gülow K et al. Lack of T-cell receptor–induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death. Cancer Res 2009; 69: 4175–4183.

    Article  CAS  Google Scholar 

  49. Perego P, Corna E, De Cesare M, Gatti L, Polizzi D, Pratesi G et al. Role of apoptosis and apoptosis-related genes in cellular response and antitumor efficacy of anthracyclines. Curr Med Chem 2001; 8: 31–37.

    Article  CAS  Google Scholar 

  50. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T . Cellular pharmacology of gemcitabine. Ann Oncol 2006; 17 (Suppl 5): v7–v12.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ines Kleiber-Schaaf for technical assistance in immunohistochemistry. This project was supported by research funding from Oncosuisse (Grant number OCS-01934-08-2006 to MU-M) and Kurt und Senta Herrmann-Stiftung (to MU-M). Microarray experiments and data acquisition were performed at Functional Genomics Center Zurich (http://www.fgcz.ch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Urosevic-Maiwald.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, K., Karpova, M., Asagoe, K. et al. Versican upregulation in Sézary cells alters growth, motility and resistance to chemotherapy. Leukemia 29, 2024–2032 (2015). https://doi.org/10.1038/leu.2015.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.103

This article is cited by

Search

Quick links