Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling

Abstract

Recent studies demonstrate that inflammatory signals regulate hematopoietic stem cells (HSCs). Granulocyte colony-stimulating factor (G-CSF) is often induced with infection and has a key role in the stress granulopoiesis response. However, its effects on HSCs are less clear. Herein, we show that treatment with G-CSF induces expansion and increased quiescence of phenotypic HSCs, but causes a marked, cell-autonomous HSC repopulating defect associated with induction of Toll-like receptor (TLR) expression and signaling. The G-CSF-mediated expansion of HSCs is reduced in mice lacking TLR2, TLR4 or the TLR signaling adaptor MyD88. Induction of HSC quiescence is abrogated in mice lacking MyD88 or in mice treated with antibiotics to suppress intestinal flora. Finally, loss of TLR4 or germ-free conditions mitigates the G-CSF-mediated HSC repopulating defect. These data suggest that low-level TLR agonist production by commensal flora contributes to the regulation of HSC function and that G-CSF negatively regulates HSCs, in part, by enhancing TLR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Baldridge MT, King KY, Goodell MA . Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 2011; 32: 57–65.

    Article  CAS  Google Scholar 

  2. King KY, Goodell MA . Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol 2011; 11: 685–692.

    Article  CAS  Google Scholar 

  3. Boiko JR, Borghesi L . Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 2012; 57: 1–8.

    Article  CAS  Google Scholar 

  4. Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T . Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med 2009; 15: 696–700.

    Article  CAS  Google Scholar 

  5. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 2009; 458: 904–908.

    Article  CAS  Google Scholar 

  6. King KY, Baldridge MT, Weksberg DC, Chambers SM, Lukov GL, Wu S et al. Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood 2011; 118: 1525–1533.

    Article  CAS  Google Scholar 

  7. Zhao X, Ren G, Liang L, Ai PZ, Zheng B, Tischfield JA et al. Brief report: interferon-gamma induces expansion of Lin(−)Sca-1(+)C-Kit(+) Cells. Stem Cells 2010; 28: 122–126.

    Article  Google Scholar 

  8. Esplin BL, Shimazu T, Welner RS, Garrett KP, Nie L, Zhang Q et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J Immunol 2011; 186: 5367–5375.

    Article  CAS  Google Scholar 

  9. Gross-Weege W, Dumon K, Dahmen A, Schneider EM, Roher HD . Granulocyte colony-stimulating factor (G-CSF) serum levels in surgical intensive care patients. Infection 1997; 25: 213–216.

    Article  CAS  Google Scholar 

  10. Panopoulos AD, Watowich SS . Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 2008; 42: 277–288.

    Article  CAS  Google Scholar 

  11. McKinstry WJ, Li CL, Rasko JE, Nicola NA, Johnson GR, Metcalf D . Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood 1997; 89: 65–71.

    CAS  Google Scholar 

  12. Richards MK, Liu F, Iwasaki H, Akashi K, Link DC . Pivotal role of granulocyte colony-stimulating factor in the development of progenitors in the common myeloid pathway. Blood 2003; 102: 3562–3568.

    Article  CAS  Google Scholar 

  13. de Haan G, Dontje B, Engel C, Loeffler M, Nijhof W . The kinetics of murine hematopoietic stem cells in vivo in response to prolonged increased mature blood cell production induced by granulocyte colony-stimulating factor. Blood 1995; 86: 2986–2992.

    CAS  Google Scholar 

  14. Bodine DM, Seidel NE, Orlic D . Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood 1996; 88: 89–97.

    CAS  Google Scholar 

  15. Winkler IG, Pettit AR, Raggatt LJ, Jacobsen RN, Forristal CE, Barbier V et al. Hematopoietic stem cell mobilizing agents G-CSF, cyclophosphamide or AMD3100 have distinct mechanisms of action on bone marrow HSC niches and bone formation. Leukemia 2012; 26: 1594–1601.

    Article  CAS  Google Scholar 

  16. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    Article  CAS  Google Scholar 

  17. Christopher MJ, Link DC . Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 2008; 23: 1765–1774.

    Article  Google Scholar 

  18. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  CAS  Google Scholar 

  19. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    Article  CAS  Google Scholar 

  20. Harrison DE, Jordan CT, Zhong RK, Astle CM . Primitive hemopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial, correlation and covariance calculations. Exp Hematol 1993; 21: 206–219.

    CAS  Google Scholar 

  21. Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL . Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol 1993; 122: 897–902.

    Article  CAS  Google Scholar 

  22. Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 2000; 96: 4185–4193.

    CAS  Google Scholar 

  23. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL . Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005; 202: 1599–1611.

    Article  CAS  Google Scholar 

  24. Jorgensen HG, Copland M, Allan EK, Jiang X, Eaves A, Eaves C et al. Intermittent exposure of primitive quiescent chronic myeloid leukemia cells to granulocyte-colony stimulating factor in vitro promotes their elimination by imatinib mesylate. Clinical Cancer Res 2006; 12: 626–633.

    Article  CAS  Google Scholar 

  25. Morrison SJ, Wright DE, Weissman IL . Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc Natl Acad Sci USA 1997; 94: 1908–1913.

    Article  CAS  Google Scholar 

  26. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    Article  CAS  Google Scholar 

  27. Boyd CR, Orr SJ, Spence S, Burrows JF, Elliott J, Carroll HP et al. Siglec-E is up-regulated and phosphorylated following lipopolysaccharide stimulation in order to limit TLR-driven cytokine production. J Immunol 2009; 183: 7703–7709.

    Article  CAS  Google Scholar 

  28. Cook DN, Wang S, Wang Y, Howles GP, Whitehead GS, Berman KG et al. Genetic regulation of endotoxin-induced airway disease. Genomics 2004; 83: 961–969.

    Article  CAS  Google Scholar 

  29. van Zuylen WJ, Garceau V, Idris A, Schroder K, Irvine KM, Lattin JE et al. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS One 2011; 6: e15723.

    Article  CAS  Google Scholar 

  30. Bruckmaier RM . Gene expression of factors related to the immune reaction in response to intramammary Escherichia coli lipopolysaccharide challenge. J Dairy Res 2005; 8: 131–141.

    Google Scholar 

  31. Zheng J, Ather JL, Sonstegard TS, Kerr DE . Characterization of the infection-responsive bovine lactoferrin promoter. Gene 2005; 353: 107–117.

    Article  CAS  Google Scholar 

  32. Fessler MB, Malcolm KC, Duncan MW, Worthen GS . A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide and its mediation by p38 mitogen-activated protein kinase. J Biol Chem 2002; 277: 31291–31302.

    Article  CAS  Google Scholar 

  33. Nagai Y, Garrett KP, Ohta S, Bahrun U, Kouro T, Akira S et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 2006; 24: 801–812.

    Article  CAS  Google Scholar 

  34. Zhao Y, Ling F, Wang HC, Sun XH . Chronic TLR signaling impairs the long-term repopulating potential of hematopoietic stem cells of wild type but not id1 deficient mice. PLoS One 2013; 8: e55552.

    Article  CAS  Google Scholar 

  35. Rodriguez S, Chora A, Goumnerov B, Mumaw C, Goebel WS, Fernandez L et al. Dysfunctional expansion of hematopoietic stem cells and block of myeloid differentiation in lethal sepsis. Blood 2009; 114: 4064–4076.

    Article  CAS  Google Scholar 

  36. Perry SS, Zhao Y, Nie L, Cochrane SW, Huang Z, Sun XH . Id1 but not Id3, directs long-term repopulating hematopoietic stem-cell maintenance. Blood 2007; 110: 2351–2360.

    Article  CAS  Google Scholar 

  37. Ichii M, Shimazu T, Welner RS, Garrett KP, Zhang Q, Esplin BL et al. Functional diversity of stem and progenitor cells with B-lymphopoietic potential. Immunol Rev 2010; 237: 10–21.

    Article  CAS  Google Scholar 

  38. Velders GA, van Os R, Hagoort H, Verzaal P, Guiot HF, Lindley IJ et al. Reduced stem cell mobilization in mice receiving antibiotic modulation of the intestinal flora: involvement of endotoxins as cofactors in mobilization. Blood 2004; 103: 340–346.

    Article  CAS  Google Scholar 

  39. Grassinger J, Williams B, Olsen GH, Haylock DN, Nilsson SK . Granulocyte colony stimulating factor expands hematopoietic stem cells within the central but not endosteal bone marrow region. Cytokine 2012; 58: 218–225.

    Article  CAS  Google Scholar 

  40. Bleharski JR, Niazi KR, Sieling PA, Cheng G, Modlin RL . Signaling lymphocytic activation molecule is expressed on CD40 ligand-activated dendritic cells and directly augments production of inflammatory cytokines. J Immunol 2001; 167: 3174–3181.

    Article  CAS  Google Scholar 

  41. Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E . Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol 2004; 16: 799–809.

    Article  CAS  Google Scholar 

  42. Kruse M, Meinl E, Henning G, Kuhnt C, Berchtold S, Berger T et al. Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is up-regulated by IL-1 beta. J Immunol 2001; 167: 1989–1995.

    Article  CAS  Google Scholar 

  43. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94: 2548–2554.

    CAS  Google Scholar 

  44. Tajima F, Sato T, Laver JH, Ogawa M . CD34 expression by murine hematopoietic stem cells mobilized by granulocyte colony-stimulating factor. Blood 2000; 96: 1989–1993.

    CAS  Google Scholar 

  45. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG . Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 2011; 208: 273–284.

    Article  CAS  Google Scholar 

  46. Megias J, Yanez A, Moriano S, O'Connor JE, Gozalbo D, Gil ML . Direct Toll-like receptor-mediated stimulation of hematopoietic stem and progenitor cells occurs in vivo and promotes differentiation toward macrophages. Stem Cells 2012; 30: 1486–1495.

    Article  CAS  Google Scholar 

  47. Kamada N, Seo SU, Chen GY, Nunez G . Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 2013; 13: 321–335.

    Article  CAS  Google Scholar 

  48. Frangoul H, Nemecek ER, Billheimer D, Pulsipher MA, Khan S, Woolfrey A et al. A prospective study of G-CSF primed bone marrow as a stem-cell source for allogeneic bone marrow transplantation in children: a Pediatric Blood and Marrow Transplant Consortium (PBMTC) study. Blood 2007; 110: 4584–4587.

    Article  CAS  Google Scholar 

  49. Chang YJ, Huang XJ . Use of G-CSF-stimulated marrow in allogeneic hematopoietic stem cell transplantation settings: a comprehensive review. Clin Transplant 2011; 25: 13–23.

    Article  CAS  Google Scholar 

  50. Arcese W, De Angelis G, Cerretti R . Granulocyte-mobilized bone marrow. Curr Opin Hematol 2012; 19: 448–453.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J Tucker-Davis for animal care. We also thank the Alvin J Siteman Cancer Center at Washington University School of Medicine and Barnes-Jewish Hospital in St. Louis, MO, USA, for the use of the Siteman Flow Cytometry Core, which provided cell sorting and analysis service. The Siteman Cancer Center is supported in part by an NCI Cancer Center Support Grant #P30 CA91842. This work was supported by the NIH grant RO1 HL60772 (to DCL), Alex's Lemonade Stand Foundation (to LGS), the Children's Discovery Institute of Washington University and St Louis Children's Hospital (to LGS), and Hyundai Motor America (Hyundai Hope on Wheels scholar award to LGS). LGS is a scholar of the Child Health Research Center of Excellence in Developmental Biology at Washington University School of Medicine (K12-HD076224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D C Link.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions

LGS designed the research, performed the research, analyzed data and wrote the paper. JNB performed the research and analyzed data. MJC designed the research, performed the research and analyzed data. PKG performed the research. MPR performed the research. ACH performed the research. JRW performed the research. AMG designed the research. DCL designed the research, analyzed data and wrote the paper.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuettpelz, L., Borgerding, J., Christopher, M. et al. G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling. Leukemia 28, 1851–1860 (2014). https://doi.org/10.1038/leu.2014.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.68

Search

Quick links