Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors

Abstract

The recent understanding of plasma cell (PC) biology has been obtained mainly from murine models. The current concept is that plasmablasts home to the BM and further differentiate into long-lived PCs (LLPCs). These LLPCs survive for months in contact with a complex niche comprising stromal cells (SCs) and hematopoietic cells, both producing recruitment and survival factors. Using a multi-step culture system, we show here the possibility to differentiate human memory B cells into LLPCs surviving for at least 4 months in vitro and producing immunoglobulins continuously. A remarkable feature is that IL-6 is mandatory to generate LLPCs in vitro together with either APRIL or soluble factors produced by SCs, unrelated to APRIL/BAFF, SDF-1, or IGF-1. These LLPCs are out of the cell cycle, express highly PC transcription factors and surface markers. This model shows a remarkable robustness of human LLPCs, which can survive and produce highly immunoglobulins for months in vitro without the contact with niche cells, providing the presence of a minimal cocktail of growth factors and nutrients. This model should be useful to understand further normal PC biology and its deregulation in premalignant or malignant PC disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dörner T et al. Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 2006; 6: 741–750.

    Article  CAS  PubMed  Google Scholar 

  2. Hideshima T, Mitsiades C, Ikeda H, Chauhan D, Raje N, Gorgun G et al. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells. Blood 2010; 115: 3772–3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Terstappen L, Steen J, Seger-Nolten MJ, Loken MR . Identification and characterization of plasma cells in normal bone marrow by high resolution flow cytometry. Blood 1990; 9: 1739–1747.

    Google Scholar 

  4. Tangye SG . Staying alive: regulation of plasma cell survival. Trends Immunol 2011; 32: 595–602.

    Article  CAS  PubMed  Google Scholar 

  5. Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T . Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 2004; 20: 707–718.

    Article  CAS  PubMed  Google Scholar 

  6. Chu VT, Berek C . The establishment of the plasma cell survival niche in the bone marrow. Immunol Rev 2013; 251: 177–188.

    Article  PubMed  Google Scholar 

  7. Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med 2001; 194: 45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F . The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013; 24: 203–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Benson MJ, Dillon SR, Castigli E, Geha RS, Xu S, Lam K-P et al. Cutting edge: the dependence of plasma cells and independence of memory B cells on BAFF and APRIL. J Immunol 2008; 180: 3655–3659.

    Article  CAS  PubMed  Google Scholar 

  10. Jourdan M, Caraux A, De Vos J, Fiol G, Larroque M, Cognot C et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 2009; 114: 5173–5181.

    Article  CAS  PubMed  Google Scholar 

  11. Huard B, McKee T, Bosshard C, Durual S, Matthes T, Myit S et al. APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. J Clin Invest 2008; 118: 2887–2895.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Moreaux J, Sprynski A-C, Dillon SR, Mahtouk K, Jourdan M, Ythier A et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 2009; 83: 119–129.

    Article  CAS  PubMed  Google Scholar 

  13. Wijdenes J, Vooijs WC, Clement C, Post J, Morard F, VIta N et al. A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1. Br J Heamatol 1996; 94: 318–323.

    Article  CAS  Google Scholar 

  14. Belnoue E, Tougne C, Rochat AF, Lambert PH, Pinschewer DD, Siegrist CA . Homing and adhesion patterns determine the cellular composition of the bone marrow plasma cell niche. J Immunol 2012; 188: 1283–1291.

    Article  CAS  PubMed  Google Scholar 

  15. Kopf M, Baumann H, Freer G, Freudenberg M, Lamers M, Kishimoto T et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 1994; 368: 339–342.

    Article  CAS  PubMed  Google Scholar 

  16. Minges Wols HA, Underhill GH, Kansas GS, Witte PL . The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J Immunol 2002; 169: 4213–4221.

    Article  CAS  PubMed  Google Scholar 

  17. Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B, Mostarac M et al. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J Immunol 2003; 171: 1684–1690.

    Article  CAS  PubMed  Google Scholar 

  18. Mesin L, Di Niro R, Thompson KM, Lundin KEA, Sollid LM . Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J Immunol 2011; 187: 2867–2874.

    Article  CAS  PubMed  Google Scholar 

  19. Mahtouk K, Moreaux J, Hose D, Rème T, Meissner T, Jourdan M et al. Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. BMC Cancer 2010; 10: 198.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anderson KC, Carrasco RD . Pathogenesis of myeloma. Annu Rev Pathol 2011; 6: 249–274.

    Article  CAS  PubMed  Google Scholar 

  21. Mei HE, Yoshida T, Sime W, Hiepe F, Thiele K, Manz RA et al. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009; 113: 2461–2469.

    Article  CAS  PubMed  Google Scholar 

  22. Caraux A, Klein B, Paiva B, Bret C, Schmitz A, Fuhler GM et al. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells. Haematologica 2010; 95: 1016–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Geffroy-Luseau A, Jégo G, Bataille R, Campion L, Pellat-Deceunynck C . Osteoclasts support the survival of human plasma cells in vitro. Int Immunol 2008; 20: 775–782.

    Article  CAS  PubMed  Google Scholar 

  24. Cocco M, Stephenson S, Care MA, Newton D, Barnes NA, Davison A et al. In vitro generation of long-lived human plasma cells. J Immunol 2012; 189: 5773–5785.

    Article  CAS  PubMed  Google Scholar 

  25. Amé-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 2007; 109: 693–702.

    Article  PubMed  Google Scholar 

  26. Jourdan M, Caraux A, Caron G, Robert N, Fiol G, Reme T et al. Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. J Immunol 2011; 187: 3931–3941.

    Article  CAS  PubMed  Google Scholar 

  27. Reme T, Hose D, De Vos J, Vassal A, Poulain PO, Pantesco V et al. A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments. BMC Bioinformatics 2008; 9: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Le Carrour T, Assou S, Tondeur S, Lhermitte L, Lamb N, Reme T et al. Amazonia!: an online resource to google and visualize public human whole genome expression data. Open Bioinformatics J 2010; 4: 5–10.

    Article  CAS  Google Scholar 

  29. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sprynski AC, Hose D, Caillot L, Reme T, Shaughnessy JDJ, Barlogie B et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009; 113: 4614–4626.

    Article  CAS  PubMed  Google Scholar 

  32. Bossen C, Schneider P . BAFF, APRIL and their receptors: structure, function and signaling. Semin Immunol 2006; 18: 263–275.

    Article  CAS  PubMed  Google Scholar 

  33. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahévas M, Patin P, Huetz F, Descatoire M, Cagnard N, Bole-Feysot C et al. B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. J Clin Invest 2012; 123: 432–442.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Slifka MK, Antia R, Whitmire JK, Ahmed R . Humoral immunity due to long-lived plasma cells. Immunity 1998; 8: 363–372.

    Article  CAS  PubMed  Google Scholar 

  36. Manz RA, Hauser AE, Hiepe F, Radbruch A . Maintenance of serum antibody levels. Annu Rev Immunol 2005; 23: 367–386.

    Article  CAS  PubMed  Google Scholar 

  37. Medina F, Segundo C, Campos-Caro A, Gonzalez-Garcia I, Brieva JA . The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 2002; 99: 2154–2161.

    Article  CAS  PubMed  Google Scholar 

  38. Kallies A . Plasma cell ontogeny defined by quantitative changes in Blimp-1 expression. J Exp Med 2004; 200: 967–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH . Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003; 4: 321–329.

    Article  CAS  PubMed  Google Scholar 

  40. Rodríguez-Bayona B, Ramos-Amaya A, López-Blanco R, Campos-Caro A, Brieva JA . STAT-3 activation by differential cytokines is critical for human -generated plasma cell survival and Ig secretion. J Immunol 2013; 191: 4996–5004.

    Article  PubMed  Google Scholar 

  41. Winter O, Moser K, Mohr E, Zotos D, Kaminski H, Szyska M et al. Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 2010; 116: 1867–1875.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai C-M, Chiu Y-K, Hsu T-L, Lin I-Y, Hsieh S-L, Lin K-I . Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J Immunol 2008; 181: 4570–4579.

    Article  CAS  PubMed  Google Scholar 

  43. Anginot A, Espeli M, Chasson L, Mancini SJC, Schiff C . Galectin 1 modulates plasma cell homeostasis and regulates the humoral immune response. J Immunol 2013; 190: 5526–5533.

    Article  CAS  PubMed  Google Scholar 

  44. Odendahl M, Mei H, Hoyer BF, Jacobi AM, Hansen A, Muehlinghaus G et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 2005; 105: 1614–1621.

    Article  CAS  PubMed  Google Scholar 

  45. Bataille R, Jourdan M, Zhang XG, Klein B . Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 1989; 84: 2008–2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    Article  CAS  PubMed  Google Scholar 

  47. Chaidos A, Barnes CP, Cowan G, May PC, Melo V, Hatjiharissi E et al. Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood 2013; 121: 318–328.

    Article  CAS  PubMed  Google Scholar 

  48. Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD et al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 2010; 116: e56–e65.

    Article  CAS  PubMed  Google Scholar 

  49. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  PubMed  Google Scholar 

  50. Kassambara A, Hose D, Moreaux J, Walker BA, Protopopov A, Reme T et al. Genes with a spike expression are clustered in chromosome (sub)bands and spike (sub)bands have a powerful prognostic value in patients with multiple myeloma. Haematologica 2012; 97: 622–630.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kassambara A, Hose D, Moreaux J, Rème T, Torrent J, Rossi JF et al. Identification of pluripotent and adult stem cell genes unrelated to cell cycle and associated with poor prognosis in multiple myeloma. PLoS One 2012; 7: e42161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kassambara A, Schoenhals M, Moreaux J, Veyrune J-L, Rème T, Goldschmidt H et al. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells. PLoS One 2013; 8: e62752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schoenhals M, Kassambara A, Veyrune JL, Moreaux J, Goldschmidt H, Hose D et al. Kruppel-like factor 4 blocks tumor cell proliferation and promotes drug resistance in multiple myeloma. Haematologica 2013; 98: 1442–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moreaux J, Klein B, Bataille R, Descamps G, Maiga S, Hose D et al. A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines. Haematologica 2011; 96: 574–582.

    Article  CAS  PubMed  Google Scholar 

  55. Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A et al. Induction of angiogenesis by normal and malignant plasma cells. Blood 2009; 114: 128–143.

    Article  CAS  PubMed  Google Scholar 

  56. Schoenhals M, Frecha C, Bruyer A, Caraux A, Veyrune JL, Jourdan M et al. Efficient transduction of healthy and malignant plasma cells by lentiviral vectors pseudotyped with measles virus glycoproteins. Leukemia 2012; 26: 1663–1670.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ARC (SL220110603450, Paris, France), from ANR (2012-109/087437), and the European Community (FP7-OVERMYR). We thank Mrs Pantesco from the Microarray Core Facility of IRB (http://irb.montp.inserm.fr/en/index.php?page=Plateau&IdEquipe=6), Dr Duperray from the cytometry platform of IRB (http://irb.montp.inserm.fr/en/index.php?page=Plateau&IdEquipe=3, Montpellier Rio Imaging) and Dr Reme from the IRB Bioinformatics platform (http://irb.montp.inserm.fr/en/index.php?page=Plateau&IdEquipe=18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Klein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

MJ designed the research, performed the experiments and wrote the paper. KT, TF and FG, provided SCs and corrected the paper. MC, NR and KB performed the experiments. CD provided assistance for cytometry experiments. DH provided the data of gene-expression profiling of BMPCs. BK is the senior investigator who designed research and wrote the paper.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jourdan, M., Cren, M., Robert, N. et al. IL-6 supports the generation of human long-lived plasma cells in combination with either APRIL or stromal cell-soluble factors. Leukemia 28, 1647–1656 (2014). https://doi.org/10.1038/leu.2014.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.61

This article is cited by

Search

Quick links