Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA

Abstract

CREB (cyclic AMP response element-binding protein) is a transcription factor overexpressed in normal and neoplastic myelopoiesis and regulates cell cycle progression, although its oncogenic mechanism has not been well characterized. Replication factor C3 (RFC3) is required for chromatin loading of proliferating cell nuclear antigen (PCNA) which is a sliding clamp platform for recruiting numerous proteins in the DNA metabolism. CREB1 expression, which was activated by E2F, was coupled with RFC3 expression during the G1/S progression in the KG-1 acute myeloid leukemia (AML) cell line. There was also a direct correlation between the expression of RFC3 and CREB1 in human AML cell lines as well as in the AML cells from the patients. CREB interacted directly with the CRE site in RFC3 promoter region. CREB-knockdown inhibited primarily G1/S cell cycle transition by decreasing the expression of RFC3 as well as PCNA loading onto the chromatin. Exogenous expression of RFC3 was sufficient to rescue the impaired G1/S progression and PCNA chromatin loading caused by CREB knockdown. These studies suggest that RFC3 may have a role in neoplastic myelopoiesis by promoting the G1/S progression and its expression is regulated by CREB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Frohling S, Scholl C, Gilliland DG, Levine RL . Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005; 23: 6285–6295.

    Article  CAS  PubMed  Google Scholar 

  2. Crans-Vargas HN, Landaw EM, Bhatia S, Sandusky G, Moore TB, Sakamoto KM . Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. Blood 2002; 99: 2617–2619.

    Article  CAS  PubMed  Google Scholar 

  3. Mayr B, Montminy M . Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2: 599–609.

    Article  CAS  PubMed  Google Scholar 

  4. Siu YT, Jin DY . CREB–a real culprit in oncogenesis. FEBS J 2007; 274: 3224–3232.

    Article  CAS  PubMed  Google Scholar 

  5. Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A et al. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell 2005; 7: 351–362.

    Article  CAS  PubMed  Google Scholar 

  6. Sandoval S, Kraus C, Cho EC, Cho M, Bies J, Manara E et al. Sox4 cooperates with CREB in myeloid transformation. Blood 2012; 120: 155–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stoimenov I, Helleday T . PCNA on the crossroad of cancer. Biochem Soc Trans 2009; 37: 605–613.

    Article  CAS  PubMed  Google Scholar 

  8. Prosperi E . The fellowship of the rings: distinct pools of proliferating cell nuclear antigen trimer at work. FASEB J 2006; 20: 833–837.

    Article  CAS  PubMed  Google Scholar 

  9. Moldovan GL, Pfander B, Jentsch S . PCNA the maestro of the replication fork. Cell 2007; 129: 665–679.

    Article  CAS  PubMed  Google Scholar 

  10. Maga G, Hubscher U . Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003; 116: 3051–3060.

    Article  CAS  PubMed  Google Scholar 

  11. Scovassi AI, Prosperi E . Analysis of proliferating cell nuclear antigen (PCNA) associated with DNA. Methods Mol Biol 2006; 314: 457–475.

    Article  CAS  PubMed  Google Scholar 

  12. Erzberger JP, Berger JM . Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 2006; 35: 93–114.

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, MacNeill SA . Genome stability: a new member of the RFC family. Curr Biol 2003; 13: R873–R875.

    Article  CAS  PubMed  Google Scholar 

  14. Lockwood WW, Thu KL, Lin L, Pikor LA, Chari R, Lam WL et al. Integrative genomics identified RFC3 as an amplified candidate oncogene in esophageal adenocarcinoma. Clin Cancer Res 2012; 18: 1936–1946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Majka J, Burgers PM . The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 2004; 78: 227–260.

    Article  CAS  PubMed  Google Scholar 

  16. Maeng S, Kim GJ, Choi EJ, Yang HO, Lee DS, Sohn YC . 9-Cis-retinoic acid induces growth inhibition in retinoid-sensitive breast cancer and sea urchin embryonic cells via retinoid X receptor alpha and replication factor C3. Mol Endocrinol 2012; 26: 1821–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 2002; 13: 1977–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng JC, Kinjo K, Judelson DR, Chang J, Wu WS, Schmid I et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood 2008; 111: 1182–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D . Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 2009; 106: 7113–7118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salmon P, Trono D . Production and titration of lentiviral vectors. Curr Protoc Hum Genet 2007; Chapter 12: Unit 12.10.

    PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  22. Galiveti CR, Rozhdestvensky TS, Brosius J, Lehrach H, Konthur Z . Application of housekeeping npcRNAs for quantitative expression analysis of human transcriptome by real-time PCR. RNA 2010; 16: 450–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaves-Perez A, Mack B, Maetzel D, Kremling H, Eggert C, Harreus U et al. EpCAM regulates cell cycle progression via control of cyclin D1 expression. Oncogene 2013; 32: 641–650.

    Article  CAS  PubMed  Google Scholar 

  24. Lavine JA, Raess PW, Davis DB, Rabaglia ME, Presley BK, Keller MP et al. Overexpression of pre-pro-cholecystokinin stimulates beta-cell proliferation in mouse and human islets with retention of islet function. Mol Endocrinol 2008; 22: 2716–2728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pellegrini M, Cheng JC, Voutila J, Judelson D, Taylor J, Nelson SF et al. Expression profile of CREB knockdown in myeloid leukemia cells. BMC Cancer 2008; 8: 264.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  PubMed  Google Scholar 

  27. Ji JY, Dyson NJ . Interplay between cyclin-dependent kinases and E2F-dependent transcription. In: Enders GH (ed). Cell Cycle Deregulation in Cancer Springer: New York, 2010; pp 23–41.

    Chapter  Google Scholar 

  28. Takasaki Y, Deng JS, Tan EM . A nuclear antigen associated with cell proliferation and blast transformation. J Exp Med 1981; 154: 1899–1909.

    Article  CAS  PubMed  Google Scholar 

  29. Ashton NW, Bolderson E, Cubeddu L, O'Byrne KJ, Richard DJ . Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol Biol 2013; 14: 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Squires MS, Feltell RE, Wallis NG, Lewis EJ, Smith DM, Cross DM et al. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol Cancer Therapeut 2009; 8: 324–332.

    Article  CAS  Google Scholar 

  31. Tsurimoto T . PCNA binding proteins. Front Biosci 1999; 4: D849–D858.

    Article  CAS  PubMed  Google Scholar 

  32. Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL . Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev 2002; 16: 3034–3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bakshi S, Zhang X, Godoy-Tundidor S, Cheng RY, Sartor MA, Medvedovic M et al. Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor. Environ Health Perspect 2008; 116: 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henneke G, Koundrioukoff S, Hubscher U . Multiple roles for kinases in DNA replication. EMBO Rep 2003; 4: 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shankar DB, Cheng JC, Sakamoto KM . Role of cyclic AMP response element binding protein in human leukemias. Cancer 2005; 104: 1819–1824.

    Article  CAS  PubMed  Google Scholar 

  36. Sandoval S, Pigazzi M, Sakamoto KM . CREB: a key regulator of normal and neoplastic hematopoiesis. Adv Hematol 2009; 2009: 634292.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pigazzi M, Manara E, Baron E, Basso G . miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 2009; 69: 2471–2478.

    Article  CAS  PubMed  Google Scholar 

  38. Chen HZ, Tsai SY, Leone G . Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer2009; 9: 785–797.

    Article  CAS  Google Scholar 

  39. Tan Z, Wortman M, Dillehay KL, Seibel WL, Evelyn CR, Smith SJ et al. Small-molecule targeting of proliferating cell nuclear antigen chromatin association inhibits tumor cell growth. Mol Pharmacol 2012; 81: 811–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shimada M, Okuzaki D, Tanaka S, Tougan T, Tamai KK, Shimoda C et al. Replication factor C3 of Schizosaccharomyces pombe, a small subunit of replication factor C complex, plays a role in both replication and damage checkpoints. Mol Biol Cell 1999; 10: 3991–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH R01 HL75826 (KMS), and by the American Cancer Society Greeley & Seattle Gala/Friends of Rob Kinas Postdoctoral Fellowship and the Stanford University Dean’s Post-Doctoral Fellowship program (BM). Sorting was performed on an instrument in the Shared FACS Facility obtained using NIH S10 Shared Instrument Grant S10RR025518-0. We thank Dr Young-June Kim for helpful comments and discussion on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K M Sakamoto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, HD., Mitton, B., Lacayo, N. et al. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia 29, 1379–1389 (2015). https://doi.org/10.1038/leu.2014.350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.350

This article is cited by

Search

Quick links