Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Protein kinase N3 deficiency impedes PI3-kinase pathway-driven leukemogenesis without affecting normal hematopoiesis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N et al. Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 2010; 464: 792–796.

    Article  CAS  PubMed  Google Scholar 

  2. Lachmann S, Jevons A, De Rycker M, Casamassima A, Radtke S, Collazos A et al. Regulatory domain selectivity in the cell-type specific PKN-dependence of cell migration. PLoS One 2011; 6: e21732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mukai H . The structure and function of PKN, a protein kinase having a catalytic domain homologous to that of PKC. J Biochem 2003; 133: 17–27.

    Article  CAS  PubMed  Google Scholar 

  4. Leenders F, Mopert K, Schmiedeknecht A, Santel A, Czauderna F, Aleku M et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. EMBO J 2004; 23: 3303–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Unsal-Kacmaz K, Ragunathan S, Rosfjord E, Dann S, Upeslacis E, Grillo M et al. The interaction of PKN3 with RhoC promotes malignant growth. Mol Oncol 2012; 6: 284–298.

    Article  CAS  PubMed  Google Scholar 

  6. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    Article  CAS  PubMed  Google Scholar 

  7. Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16: 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    Article  CAS  PubMed  Google Scholar 

  11. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    Article  CAS  PubMed  Google Scholar 

  13. Di Cristofano A, Pandolfi PP . The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390.

    Article  CAS  PubMed  Google Scholar 

  14. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ . Temporal changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012; 11: 415–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A Kippel, S Shumway, P Blume-Jensen, N Kohl, G Draetta, T Vogt, G Staples and M Schoor for helpful discussions. A Klippel provided the PKN3 antibody. JAM is a Scholar of the Child Health Research Center at Washington University School of Medicine (K12-HD076224) and the Children’s Discovery Institute of Washington University and St Louis Children’s Hospital. Experiments were initiated in Sean Morrison’s laboratory.

Author Contributions

MK oversaw generation of the Pkn3fl mouse line. MK, BD and TWR performed initial characterization of Pkn3−/− mice (Supplementary Figure S1), participated in the study design and assisted with preparation of the manuscript. JAM designed and performed all experiments with the exception of Supplementary Figure S1, interpreted data and wrote the manuscript. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A Magee.

Ethics declarations

Competing interests

Pkn3fl mice were generated by Taconic-Artemis for MK, BD and TWR at Merck & Co., and the mice were subsequently provided to JAM for further analysis. JAM has no conflict of interest to declare.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, M., Dolinski, B., Rosahl, T. et al. Protein kinase N3 deficiency impedes PI3-kinase pathway-driven leukemogenesis without affecting normal hematopoiesis. Leukemia 29, 255–258 (2015). https://doi.org/10.1038/leu.2014.278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.278

Search

Quick links