Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Role of Growth arrest-specific gene 6-Mer axis in multiple myeloma

A Correction to this article was published on 03 March 2020

This article has been updated

Abstract

Multiple myeloma is a mostly incurable malignancy characterized by the expansion of a malignant plasma cell (PC) clone in the human bone marrow (BM). Myeloma cells closely interact with the BM stroma, which secretes soluble factors that foster myeloma progression and therapy resistance. Growth arrest-specific gene 6 (Gas6) is produced by BM-derived stroma cells and can promote malignancy. However, the role of Gas6 and its receptors Axl, Tyro3 and Mer (TAM receptors) in myeloma is unknown. We therefore investigated their expression in myeloma cell lines and in the BM of myeloma patients and healthy donors. Gas6 showed increased expression in sorted BMPCs of myeloma patients compared with healthy controls. The fraction of Mer+ BMPCs was increased in myeloma patients in comparison with healthy controls whereas Axl and Tyro3 were not expressed by BMPCs in the majority of patients. Downregulation of Gas6 and Mer inhibited the proliferation of different myeloma cell lines, whereas knocking down Axl or Tyro3 had no effect. Inhibition of the Gas6 receptor Mer or therapeutic targeting of Gas6 by warfarin reduced myeloma burden and improved survival in a systemic model of myeloma. Thus, the Gas6-Mer axis represents a novel candidate for therapeutic intervention in this incurable malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  1. Kuehl WM, Bergsagel PL . Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 2012; 122: 3456–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt T, Ben-Batalla I, Schultze A, Loges S . Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell Mol Life Sci 2012; 69: 1391–1414.

    Article  CAS  PubMed  Google Scholar 

  4. Lemke G, Rothlin CV . Immunobiology of the TAM receptors. Nat Rev Immunol 2008; 8: 327–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Angelillo-Scherrer A, Burnier L, Flores N, Savi P, DeMol M, Schaeffer P et al. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J Clin Invest 2005; 115: 237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P, Lupu F et al. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 2001; 7: 215–221.

    Article  CAS  PubMed  Google Scholar 

  7. Angelillo-Scherrer A, Burnier L, Lambrechts D, Fish RJ, Tjwa M, Plaisance S et al. Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest 2008; 118: 583–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernandez-Fernandez L, Bellido-Martin L, Garcia de Frutos P . Growth arrest-specific gene 6 (GAS6). An outline of its role in haemostasis and inflammation. Thromb Haemost 2008; 100: 604–610.

    Article  CAS  PubMed  Google Scholar 

  9. Hafizi S, Dahlback B . Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J 2006; 273: 5231–5244.

    Article  CAS  PubMed  Google Scholar 

  10. Lai C, Lemke G . An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 1991; 6: 691–704.

    Article  CAS  PubMed  Google Scholar 

  11. McCloskey P, Pierce J, Koski RA, Varnum B, Liu ET . Activation of the Axl receptor tyrosine kinase induces mitogenesis and transformation in 32D cells. Cell Growth Differ 1994; 5: 1105–1117.

    CAS  PubMed  Google Scholar 

  12. Lierman E, Van Miegroet H, Beullens E, Cools J . Identification of protein tyrosine kinases with oncogenic potential using a retroviral insertion mutagenesis screen. Haematologica 2009; 94: 1440–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hutterer M, Knyazev P, Abate A, Reschke M, Maier H, Stefanova N et al. Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clin Cancer Res 2008; 14: 130–138.

    Article  CAS  PubMed  Google Scholar 

  14. Ito T, Ito M, Naito S, Ohtsuru A, Nagayama Y, Kanematsu T et al. Expression of the Axl receptor tyrosine kinase in human thyroid carcinoma. Thyroid 1999; 9: 563–567.

    Article  CAS  PubMed  Google Scholar 

  15. Sawabu T, Seno H, Kawashima T, Fukuda A, Uenoyama Y, Kawada M et al. Growth arrest-specific gene 6 and Axl signaling enhances gastric cancer cell survival via Akt pathway. Mol Carcinog 2007; 46: 155–164.

    Article  CAS  PubMed  Google Scholar 

  16. Sun W, Fujimoto J, Tamaya T . Coexpression of Gas6/Axl in human ovarian cancers. Oncology 2004; 66: 450–457.

    Article  CAS  PubMed  Google Scholar 

  17. Sun WS, Fujimoto J, Tamaya T . Coexpression of growth arrest-specific gene 6 and receptor tyrosine kinases Axl and Sky in human uterine endometrial cancers. Ann Oncol 2003; 14: 898–906.

    Article  CAS  PubMed  Google Scholar 

  18. Sainaghi PP, Castello L, Bergamasco L, Galletti M, Bellosta P, Avanzi GC . Gas6 induces proliferation in prostate carcinoma cell lines expressing the Axl receptor. J Cell Physiol 2005; 204: 36–44.

    Article  CAS  PubMed  Google Scholar 

  19. van Ginkel PR, Gee RL, Shearer RL, Subramanian L, Walker TM, Albert DM et al. Expression of the receptor tyrosine kinase Axl promotes ocular melanoma cell survival. Cancer Res 2004; 64: 128–134.

    Article  CAS  PubMed  Google Scholar 

  20. Loges S, Schmidt T, Tjwa M, van Geyte K, Lievens D, Lutgens E et al. Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 2010; 115: 2264–2273.

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Batalla I, Schultze A, Wroblewski M, Erdmann R, Heuser M, Waizenegger JS et al. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 2013; 122: 2443–2452.

    Article  CAS  PubMed  Google Scholar 

  22. Keating AK, Salzberg DB, Sather S, Liang X, Nickoloff S, Anwar A et al. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 2006; 25: 6092–6100.

    Article  CAS  PubMed  Google Scholar 

  23. Cummings CT, Deryckere D, Earp HS, Graham DK . Molecular pathways: MERTK signaling in cancer. Clin Cancer Res 2013; 19: 5275–5280.

    Article  CAS  PubMed  Google Scholar 

  24. Lee-Sherick AB, Eisenman KM, Sather S, McGranahan A, Armistead PM, McGary CS et al. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia. Oncogene 2013; 32: 5359–5368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Graham DK, Salzberg DB, Kurtzberg J, Sather S, Matsushima GK, Keating AK et al. Ectopic expression of the proto-oncogene Mer in pediatric T-cell acute lymphoblastic leukemia. Clin Cancer Res 2006; 12: 2662–2669.

    Article  CAS  PubMed  Google Scholar 

  26. Ling L, Kung HJ . Mitogenic signals and transforming potential of Nyk, a newly identified neural cell adhesion molecule-related receptor tyrosine kinase. Mol Cell Biol 1995; 15: 6582–6592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stitt TN, Conn G, Gore M, Lai C, Bruno J, Radziejewski C et al. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 1995; 80: 661–670.

    Article  CAS  PubMed  Google Scholar 

  28. Ben-Batalla I, Seoane S, Garcia-Caballero T, Gallego R, Macia M, Gonzalez LO et al. Deregulation of the Pit-1 transcription factor in human breast cancer cells promotes tumor growth and metastasis. J Clin Invest 2010; 120: 4289–4302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fryer RA, Graham TJ, Smith EM, Walker-Samuel S, Morgan GJ, Robinson SP et al. Characterization of a novel mouse model of multiple myeloma and its use in preclinical therapeutic assessment. PLoS One 2013; 8: e57641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weber K, Bartsch U, Stocking C, Fehse B . A multicolor panel of novel lentiviral 'gene ontology' (LeGO) vectors for functional gene analysis. Mol Ther 2008; 16: 698–706.

    Article  CAS  PubMed  Google Scholar 

  31. Weber K, Mock U, Petrowitz B, Bartsch U, Fehse B . Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis. Gene Ther 2010; 17: 511–520.

    Article  CAS  PubMed  Google Scholar 

  32. Hose D, Reme T, Meissner T, Moreaux J, Seckinger A, Lewis J et al. Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 2009; 113: 4331–4340.

    Article  CAS  PubMed  Google Scholar 

  33. Seckinger A, Meissner T, Moreaux J, Depeweg D, Hillengass J, Hose K et al. Clinical and prognostic role of annexin A2 in multiple myeloma. Blood 2012; 120: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  34. Wu Z IR, Gentleman R, Martinez-Murillo F, Spencer F . A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Assoc 2004; 99: 909–917.

    Article  Google Scholar 

  35. Johnson WE, Li C, Rabinovic A . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8: 118–127.

    Article  PubMed  Google Scholar 

  36. Warren P TD, Martini PGV, Jackson J, Bienkowska J . PANP–a new method of gene detection on oligonucleotide expression arrays. BIBE 2007 Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering 2007; 2007, pp 108–115.

    Article  Google Scholar 

  37. Boysen J, Sinha S, Price-Troska T, Warner SL, Bearss DJ, Viswanatha D et al. The tumor suppressor axis p53/miR-34a regulates Axl expression in B-cell chronic lymphocytic leukemia: implications for therapy in p53-defective CLL patients. Leukemia 2014; 28: 451–455.

    Article  CAS  PubMed  Google Scholar 

  38. Chauhan D, Neri P, Velankar M, Podar K, Hideshima T, Fulciniti M et al. Targeting mitochondrial factor Smac/DIABLO as therapy for multiple myeloma (MM). Blood 2007; 109: 1220–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yanagita M, Arai H, Ishii K, Nakano T, Ohashi K, Mizuno K et al. Gas6 regulates mesangial cell proliferation through Axl in experimental glomerulonephritis. Am J Pathol 2001; 158: 1423–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhan F, Huang Y, Colla S, Stewart JP, Hanamura I, Gupta S et al. The molecular classification of multiple myeloma. Blood 2006; 108: 2020–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lentzsch S, Chatterjee M, Gries M, Bommert K, Gollasch H, Dorken B et al. PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia 2004; 18: 1883–1890.

    Article  CAS  PubMed  Google Scholar 

  42. Liu J, Zhang W, Stashko MA, Deryckere D, Cummings CT, Hunter D et al. UNC1062, a new and potent Mer inhibitor. Eur J Med Chem. 2013; 65: 83–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christoph S, Deryckere D, Schlegel J, Frazer JK, Batchelor LA, Trakhimets AY et al. UNC569, a novel small-molecule Mer inhibitor with efficacy against acute lymphoblastic leukemia i n vitro and in vivo. Mol Cancer Ther 2013; 12: 2367–2377.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SL is supported by the Max-Eder group leader program from Deutsche Krebshilfe, the Deutsche Forschungsgemeinschaft (DFG), the Roggenbuck Stiftung, the Hamburger Krebsgesellschaft, the Medical Faculty of the University of Hamburg (FFM program) and the Hamburger Exzellenzinitiative (LEXI program). HT was supported by an EMBO Long Term Postdoctoral Fellowship and by a Post-Doctoral fellowship from the Alexander von Humboldt foundation. EH is supported by the DFG Heisenberg-Program and receives funding from DFG. MJ is supported by a Hubertus-Wald fellowship. KP is supported by the ERC Advanced Investigator Grant no. 269081 “DISSECT”. We thank Dr. Carol Stocking (Heinrich Pette Institute, Hamburg, Germany) for supplying OP9 cells. We thank Nils Jäger on behalf of the Animal Facility (VTH) at University Medical Center Hamburg-Eppendorf for taking care of the mice housing and the FACS core facility of the UKE for the sorting.

Author Contributions

SL initiated, conceived of, designed and supervised research, wrote the manuscript and analyzed data. JSW and IBB designed experiments, wrote the manuscript, performed experiments and analyzed data. NW, TM, MW, KR, HT, SS, VG, MCC and MJ performed experiments and data analysis. MB, DA, DS, WF, EH, NK, BF, DH, BK, MSR, KP and CB contributed vital new reagents and commented on the research direction and edited the manuscript. All authors discussed and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Loges.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waizenegger, J., Ben-Batalla, I., Weinhold, N. et al. Role of Growth arrest-specific gene 6-Mer axis in multiple myeloma. Leukemia 29, 696–704 (2015). https://doi.org/10.1038/leu.2014.236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.236

This article is cited by

Search

Quick links