Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia

Abstract

Disease relapse or progression is a major cause of death following umbilical cord blood (UCB) transplantation (UCBT) in patients with high-risk, relapsed or refractory acute lymphoblastic leukemia (ALL). Adoptive transfer of donor-derived T cells modified to express a tumor-targeted chimeric antigen receptor (CAR) may eradicate persistent disease after transplantation. Such therapy has not been available to UCBT recipients, however, due to the low numbers of available UCB T cells and the limited capacity for ex vivo expansion of cytolytic cells. We have developed a novel strategy to expand UCB T cells to clinically relevant numbers in the context of exogenous cytokines. UCB-derived T cells cultured with interleukin (IL)-12 and IL-15 generated >150-fold expansion with a unique central memory/effector phenotype. Moreover, UCB T cells were modified to both express the CD19-specific CAR, 1928z, and secrete IL-12. 1928z/IL-12 UCB T cells retained a central memory-effector phenotype and had increased antitumor efficacy in vitro. Furthermore, adoptive transfer of 1928z/IL-12 UCB T cells resulted in significantly enhanced survival of CD19+ tumor-bearing SCID-Beige mice. Clinical translation of CAR-modified UCB T cells could augment the graft-versus-leukemia effect after UCBT and thus further improve disease-free survival of transplant patients with B-cell ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eapen M, Rocha V, Sanz G, Scaradavou A, Zhang MJ, Arcese W et al. Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol 2010; 11: 653–660.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ponce DM, Zheng J, Gonzales AM, Lubin M, Heller G, Castro-Malaspina H et al. Reduced late mortality risk contributes to similar survival after double-unit cord blood transplantation compared with related and unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17: 1316–1326.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barker JN, Scaradavou A, Stevens CE . Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood 2010; 115: 1843–1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brunstein CG, Gutman JA, Weisdorf DJ, Woolfrey AE, Defor TE, Gooley TA et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood 2010; 116: 4693–4699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verneris MR, Brunstein CG, Barker J, MacMillan ML, DeFor T, McKenna DH et al. Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood 2009; 114: 4293–4299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marks DI, Woo KA, Zhong X, Appelbaum FR, Bachanova V, Barker JN et al. Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: a comparison with allografts from adult unrelated donors. Haematologica 2014; 99: 322–328.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M, La Perle K et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin Cancer Res 2007; 13: 5426–5435.

    Article  CAS  PubMed  Google Scholar 

  8. Wang LX, Westwood JA, Moeller M, Duong CP, Wei WZ, Malaterre J et al. Tumor ablation by gene-modified T cells in the absence of autoimmunity. Cancer Res 2010; 70: 9591–9598.

    Article  CAS  PubMed  Google Scholar 

  9. Brentjens RJ, Riviere I, Park JH, Davila ML, Wang X, Stefanski J et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118: 4817–4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3: 95ra73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119: 2709–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kochenderfer JN, Dudley ME, Carpenter RO, Kassim SH, Rose JJ, Telford WG et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood 2013; 122: 4129–4139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brentjens RJ, Latouche JB, Santos E, Marti F, Gong MC, Lyddane C et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat Med 2003; 9: 279–286.

    Article  CAS  PubMed  Google Scholar 

  15. Gong MC, Latouche JB, Krause A, Heston WD, Bander NH, Sadelain M . Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1999; 1: 123–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Okas M, Gertow J, Uzunel M, Karlsson H, Westgren M, Karre K et al. Clinical expansion of cord blood-derived T cells for use as donor lymphocyte infusion after cord blood transplantation. J Immunother 2010; 33: 96–105.

    Article  PubMed  Google Scholar 

  17. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M et al. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119: 4133–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C et al. Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood 2002; 100: 1611–1618.

    CAS  PubMed  Google Scholar 

  19. Serrano LM, Pfeiffer T, Olivares S, Numbenjapon T, Bennitt J, Kim D et al. Differentiation of naive cord-blood T cells into CD19-specific cytolytic effectors for posttransplantation adoptive immunotherapy. Blood 2006; 107: 2643–2652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Micklethwaite KP, Savoldo B, Hanley PJ, Leen AM, Demmler-Harrison GJ, Cooper LJ et al. Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood 2010; 115: 2695–2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson KL, Ayello J, Hughes R, van de Ven C, Issitt L, Kurtzberg J et al. Ex vivo expansion, maturation, and activation of umbilical cord blood-derived T lymphocytes with IL-2, IL-12, anti-CD3, and IL-7. Potential for adoptive cellular immunotherapy post-umbilical cord blood transplantation. Exp Hematol 2002; 30: 245–251.

    Article  CAS  PubMed  Google Scholar 

  22. Hanley PJ, Cruz CR, Savoldo B, Leen AM, Stanojevic M, Khalil M et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood 2009; 114: 1958–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith KM, Tonon J, Evans KL, Lubin MN, Byam C, Ponce DM et al. Analysis of 402 cord blood units to assess factors influencing infused viable CD34+ cell dose: the critical determinant of engraftment. Blood 2013; 122: 296.

    Article  Google Scholar 

  24. Hsu C, Jones SA, Cohen CJ, Zheng Z, Kerstann K, Zhou J et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 2007; 109: 5168–5177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fehniger TA, Suzuki K, Ponnappan A, VanDeusen JB, Cooper MA, Florea SM et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med 2001; 193: 219–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tammana S, Huang X, Wong M, Milone MC, Ma L, Levine BL et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum Gene Ther 2010; 21: 75–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antony GK, Dudek AZ . Interleukin 2 in cancer therapy. Curr Med Chem 2010; 17: 3297–3302.

    Article  CAS  PubMed  Google Scholar 

  28. Davis CC, Marti LC, Sempowski GD, Jeyaraj DA, Szabolcs P . Interleukin-7 permits Th1/Tc1 maturation and promotes ex vivo expansion of cord blood T cells: a critical step toward adoptive immunotherapy after cord blood transplantation. Cancer Res 2010; 70: 5249–5258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673–1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

HJP was supported by the National Health and Medical Research Council of Australia.

Author Contributions

HJP designed and performed the experiments, analyzed the data and prepared the manuscript. TJP and DGvL designed and performed the experiments and analyzed the data. KJC, JNB and RJB designed the experiments, analyzed the data and revised the manuscript. SAG designed the experiments, analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Brentjens.

Ethics declarations

Competing interests

RJB is a co-founder, stockholder, and consultant for Juno Therapeutics. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegram, H., Purdon, T., van Leeuwen, D. et al. IL-12-secreting CD19-targeted cord blood-derived T cells for the immunotherapy of B-cell acute lymphoblastic leukemia. Leukemia 29, 415–422 (2015). https://doi.org/10.1038/leu.2014.215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.215

This article is cited by

Search

Quick links