Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis

Abstract

Cancer has been shown to result from the sequential acquisition of genetic alterations in a single lineage of cells. In leukemia, increasing evidence has supported the idea that this accumulation of mutations occurs in self-renewing hematopoietic stem cells (HSCs). These HSCs containing some, but not all, leukemia-specific mutations have been termed as pre-leukemic. Multiple recent studies have sought to understand these pre-leukemic HSCs and determine to what extent they contribute to leukemogenesis. These studies have elucidated patterns in mutation acquisition in leukemia, demonstrated resistance of pre-leukemic cells to standard induction chemotherapy and identified these pre-leukemic cells as a putative reservoir for the generation of relapsed disease. When combined with decades of research on clonal evolution in leukemia, mouse models of leukemogenesis, and recent massively parallel sequencing-based studies of primary patient leukemia, studies of pre-leukemic HSCs begin to piece together the evolutionary puzzle of leukemogenesis. These results have broad implications for leukemia treatment, targeted therapies, minimal residual disease monitoring and early detection screening.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467: 1114–1117.

    Article  CAS  Google Scholar 

  2. Jones S, Chen W-D, Parmigiani G, Diehl F, Beerenwinkel N, Antal T et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci USA 2008; 105: 4283–4288.

    Article  CAS  Google Scholar 

  3. Araten DJ, Golde DW, Zhang RH, Thaler HT, Gargiulo L, Notaro R et al. A quantitative measurement of the human somatic mutation rate. Cancer Res 2005; 65: 8111–8117.

    Article  CAS  Google Scholar 

  4. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV et al. Signatures of mutational processes in human cancer. Nature 2013; 500: 415–421.

    Article  CAS  Google Scholar 

  5. Fialkow PJ, Singer JW, Raskind WH, W AJ, Jacobson RJ, Bernstein ID et al. Clonal development, stem-cell differentiation, and clinical remissions in acute non-lymphocytic leukemia. N Engl J Med 1987; 317: 468–473.

    Article  CAS  Google Scholar 

  6. Fialkow PJ, Janssen JW, Bartram CR . Clonal remissions in acute nonlymphocytic leukemia: evidence for a multistep pathogenesis of the malignancy. Blood 1991; 77: 1415–1417.

    CAS  PubMed  Google Scholar 

  7. Ferraris aM, Raskind WH, Bjornson BH, Jacobson RJ, Singer JW, Fialkow PJ . Heterogeneity of B cell involvement in acute nonlymphocytic leukemia. Blood 1985; 66: 342–344.

    CAS  PubMed  Google Scholar 

  8. Kwong YL, Wong KF, Chan V, Chan CH . Persistence of AMLI Rearrangement in Peripheral Blood Cells in t(8;21). Cancer Genet Cytogenet 1996; 54: 151–154.

    Article  Google Scholar 

  9. Miyamoto T, Nagafuji K, Akashi K, Harada M, Kyo T, Akashi T et al. Persistence of multipotent progenitors expressing AML1/ETO transcripts in long-term remission patients with t(8;21) acute myelogenous leukemia. Blood 1996; 87: 4789–4796.

    CAS  PubMed  Google Scholar 

  10. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  Google Scholar 

  11. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360.

    Article  CAS  Google Scholar 

  12. Wiemels JL, Cazzaniga G, Daniotti M, Eden OB, Addison GM, Masera G et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 1999; 354: 1499–1503.

    Article  CAS  Google Scholar 

  13. Zuna J, Burjanivova T, Mejstrikova E, Zemanova Z, Muzikova K, Meyer C et al. Covert preleukemia driven by MLL. Gene Fusion 2009; 107: 98–107.

    Google Scholar 

  14. Zuna J, Muzikova K, Ford AM, Maia AT, Krejci O, Tousovska K et al. Pre-natal, clonal origin of acute lymphoblastic leukaemia in triplets. Leuk Lymphoma 2003; 44: 2099–2102.

    Article  Google Scholar 

  15. Van Delft FW, Horsley S, Colman S, Anderson K, Bateman C, Kempski H et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011; 117: 6247–6254.

    Article  CAS  Google Scholar 

  16. Ford aM, Bennett Ca, Price CM, Bruin MC, Van Wering ER, Greaves M . Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 4584–4588.

    Article  CAS  Google Scholar 

  17. Gale KB, Ford aM, Repp R, Borkhardt a, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954.

    Article  CAS  Google Scholar 

  18. Maia AT, Tussiwand R, Cazzaniga G, Rebulla P, Colman S, Biondi A et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer 2004; 40: 38–43.

    Article  Google Scholar 

  19. Greaves M . Pre-natal Origins of Childhood Leukemia. Rev Clin Exp Hematol 2003; 3: 233–245.

    Google Scholar 

  20. Horsley SW, Colman S, Mckinley M, Bateman CM, Jenney M, Chaplin T et al. Genetic Lesions in a Preleukemic Aplasia Phase in a Child with Acute Lymphoblastic. Leukemia 2008; 340: 333–340.

    Google Scholar 

  21. Hong D, Gupta R, Ancliff P, Atzberger A, Brown J, Soneji S et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336–339.

    Article  CAS  Google Scholar 

  22. Knuutila S, Teerenhovi L, Larramendy ML, Elonen E, Franssila KO, Nylund SJ et al. Cell lineage involvement of recurrent chromosomal abnormalities in hematologic neoplasms. Genes Chromosomes Cancer 1994; 10: 95–102.

    Article  CAS  Google Scholar 

  23. Jonas D, Lübbert M, Kawasaki ES, Henke M, Bross KJ, Mertelsmann R et al. Clonal analysis of bcr-abl rearrangement in T lymphocytes from patients with chronic myelogenous leukemia. Blood 1992; 79: 1017–1023.

    CAS  PubMed  Google Scholar 

  24. Haferlach T, Winkemann M, Nickenig C, Meeder M, Ramm-Petersen L, Schoch R et al. Which compartments are involved in Philadelphia-chromosome positive chronic myeloid leukaemia? An answer at the single cell level by combining May-Grünwald-Giemsa staining and fluorescence in situ hybridization techniques. Br J Haematol 1997; 97: 99–106.

    Article  CAS  Google Scholar 

  25. Nitta M, Kato Y, Strife A, Wachter M, Fried J, Perez A et al. Incidence of involvement of the B and T lymphocyte lineages in chronic myelogenous leukemia. Blood 1985; 66: 1053–1061.

    CAS  PubMed  Google Scholar 

  26. Juneja HS, Weiner R . Presence of the Philadelphia chromosome (Ph 1) in pokeweed mitogen stimulated lymphocytes during chronic phase of chronic myelocytic leukemia (CML). Cancer Genet Cytogenet 1981; 4: 39–44.

    Article  CAS  Google Scholar 

  27. Fialkow PJ, Jacobson RJ, Papayannopoulou T . Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 1977; 63: 125–130.

    Article  CAS  Google Scholar 

  28. Bedi a, Zehnbauer Ba, Collector MI, Barber JP, Zicha MS, Sharkis SJ et al. BCR-ABL gene rearrangement and expression of primitive hematopoietic progenitors in chronic myeloid leukemia. Blood 1993; 81: 2898–2902.

    CAS  PubMed  Google Scholar 

  29. Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  Google Scholar 

  30. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 2011; 118: 5565–5572.

    Article  CAS  Google Scholar 

  31. Chomel J-C, Bonnet M-L, Sorel N, Bertrand A, Meunier M-C, Fichelson S et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011; 118: 3657–3660.

    Article  CAS  Google Scholar 

  32. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ . Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011; 121: 396–409.

    Article  CAS  Google Scholar 

  33. Mahon F-X, Réa D, Guilhot J, Guilhot F, Huguet F, Nicolini F et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 2010; 11: 1029–1035.

    Article  CAS  Google Scholar 

  34. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 2013; 122: 515–522.

    Article  CAS  Google Scholar 

  35. Kikushige Y, Ishikawa F, Miyamoto T, Shima T, Urata S, Yoshimoto G et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 2011; 20: 246–259.

    Article  CAS  Google Scholar 

  36. Jamieson CHM, Gotlib J, Durocher Ja, Chao MP, Mariappan MR, Lay M et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103: 6224–6229.

    Article  CAS  Google Scholar 

  37. Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12: 367–380.

    Article  CAS  Google Scholar 

  38. Chu SH, Heiser D, Li L, Kaplan I, Collector M, Huso D et al. FLT3-ITD Knockin Impairs Hematopoietic Stem Cell Quiescence/Homeostasis, Leading to Myeloproliferative Neoplasm. Cell Stem Cell 2012; 11: 346–358.

    Article  CAS  Google Scholar 

  39. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation. Cancer Cell 2011; 20: 1–14.

    Article  Google Scholar 

  40. Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011; 20: 25–38.

    Article  CAS  Google Scholar 

  41. Challen Ga, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2011; 44: 23–31.

    Article  Google Scholar 

  42. Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brüstle A et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012; 488: 656–659.

    Article  CAS  Google Scholar 

  43. Mullighan CG, Phillips La, Su X, Ma J, Miller CB, Shurtleff S et al. Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic. Leukemic 2008; 28: 1377–1380.

    Google Scholar 

  44. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  Google Scholar 

  45. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44: 1179–1181.

    Article  CAS  Google Scholar 

  46. Majeti R . Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene 2010; 30: 1009–1019.

    Article  Google Scholar 

  47. Majeti R, Chao MP, Alizadeh Aa, Pang WW, Jaiswal S, Gibbs KD et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  Google Scholar 

  48. Jan M, Chao MP, Cha AC, Alizadeh Aa, Gentles AJ, Weissman IL et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA 2011; 108: 5009–5014.

    Article  CAS  Google Scholar 

  49. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012; 4: 149ra118.

    Article  Google Scholar 

  50. Corces-Zimmerman MR, Hong W-J, Weissman IL, Medeiros BC, Majeti R . Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA 2014; 111: 2548–2553.

    Article  CAS  Google Scholar 

  51. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  Google Scholar 

  52. Kronke J, Bullinger L, Teleanu V, Tschurtz F, Gaidzik VI, Kuhn MWM et al. Clonal evolution in relapsed NPM1 mutated acute myeloid leukemia. Blood 2013; 122: 100–108.

    Article  Google Scholar 

  53. Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 2014; 14: 329–341.

    Article  CAS  Google Scholar 

  54. Jamieson CH . Chronic myeloid leukemia stem cells. Hematol Am Soc Hematol Educ Program 2008; 1: 436–442.

    Article  Google Scholar 

  55. Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood 2009; 114: 2220–2231.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.R.C.Z. is supported by the Stanford University Smith Fellowship, the NSF GRFP, and the NIH F31 Pre-doctoral fellowship (F31CA180659). R.M. holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund and is a New York Stem Cell Foundation Robertson Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Majeti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corces-Zimmerman, M., Majeti, R. Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia 28, 2276–2282 (2014). https://doi.org/10.1038/leu.2014.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.211

This article is cited by

Search

Quick links