Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice

Abstract

The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4–25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluated in a human-SCID model of Burkitt lymphoma. The distribution profile of bsAbs mimics the data obtained by studying the pharmacokinetics of anti-CD20 antibodies, showing a peak in the tumor mass 3–4 days after injection. The treatment with bsAbs completely prevented the development of human/SCID lymphoma. The tumor growth was blocked by the activation of the C cascade and by the recruitment of macrophages, polymorphonuclear and natural killer cells. This strategy can easily be applied to the other anti-tumor C-fixing antibodies currently used in the clinic or tested in preclinical studies using the same vector with the appropriate modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Baker M . Upping the ante on antibodies. Nat Biotechnol 2005; 23: 1065–1072.

    Article  CAS  PubMed  Google Scholar 

  2. Cohen J, Wilson A . New challenges to medicare beneficiary access to mAbs. MAbs 2009; 1: 56–66.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ledford H . 'Biosimilar' drugs poised to penetrate market. Nature 2010; 468: 18–19.

    Article  CAS  PubMed  Google Scholar 

  4. Adams GP, Weiner LM . Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23: 1147–1157.

    Article  CAS  PubMed  Google Scholar 

  5. Hong CW, Zeng Q . Awaiting a new era of cancer immunotherapy. Cancer Res 2012; 72: 3715–3719.

    Article  CAS  PubMed  Google Scholar 

  6. Byrd JC, Kitada S, Flinn IW, Aron JL, Pearson M, Lucas D et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 2002; 99: 1038–1043.

    Article  CAS  PubMed  Google Scholar 

  7. Bannerji R, Kitada S, Flinn IW, Pearson M, Young D, Reed JC et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol 2003; 21: 1466–1471.

    Article  CAS  PubMed  Google Scholar 

  8. Hubert P, Amigorena S . Antibody-dependent cell cytotoxicity in monoclonal antibody-mediated tumor immunotherapy. Oncoimmunology 2012; 1: 103–105.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nimmerjahn F, Ravetch JV . Fcgamma receptors: old friends and new family members. Immunity 2006; 24: 19–28.

    Article  CAS  PubMed  Google Scholar 

  10. Weiner LM, Surana R, Wang S . Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010; 10: 317–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Winiarska M, Glodkowska-Mrowka E, Bil J, Golab J . Molecular mechanisms of the antitumor effects of anti-CD20 antibodies. Front Biosci (Landmark Ed) 2011; 16: 277–306.

    Article  CAS  Google Scholar 

  12. Dunkelberger JR, Song WC . Complement and its role in innate and adaptive immune responses. Cell Res 2010; 20: 34–50.

    Article  CAS  PubMed  Google Scholar 

  13. Zipfel PF, Skerka C . Complement regulators and inhibitory proteins. Nat Rev Immunol 2009; 9: 729–740.

    Article  CAS  PubMed  Google Scholar 

  14. Macor P, Tedesco F . Complement as effector system in cancer immunotherapy. Immunol Lett 2007; 111: 6–13.

    Article  CAS  PubMed  Google Scholar 

  15. Maher J, Adami AA . Antitumor immunity: easy as 1, 2, 3 with monoclonal bispecific trifunctional antibodies? Cancer Res 2013; 73: 5613–5617.

    Article  CAS  PubMed  Google Scholar 

  16. Baeuerle PA, Reinhardt C . Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 2009; 69: 4941–4944.

    Article  CAS  PubMed  Google Scholar 

  17. Brischwein K, Parr L, Pflanz S, Volkland J, Lumsden J, Klinger M et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 2007; 30: 798–807.

    Article  CAS  PubMed  Google Scholar 

  18. Haas C, Krinner E, Brischwein K, Hoffmann P, Lutterbuse R, Schlereth B et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009; 214: 441–453.

    Article  CAS  PubMed  Google Scholar 

  19. Baeuerle PA, Kufer P, Bargou R . BiTE: Teaching antibodies to engage T-cells for cancer therapy. Curr Opin Mol Ther 2009; 11: 22–30.

    CAS  PubMed  Google Scholar 

  20. Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012; 119: 6226–6233.

    Article  CAS  PubMed  Google Scholar 

  21. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M et al. Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 2009; 11: 162–171.

    Article  CAS  PubMed  Google Scholar 

  22. Blok VT, Daha MR, Tijsma O, Harris CL, Morgan BP, Fleuren GJ et al. A bispecific monoclonal antibody directed against both the membrane-bound complement regulator CD55 and the renal tumor-associated antigen G250 enhances C3 deposition and tumor cell lysis by complement. J Immunol 1998; 160: 3437–3443.

    CAS  PubMed  Google Scholar 

  23. Gelderman KA, Blok VT, Fleuren GJ, Gorter A . The inhibitory effect of CD46, CD55, and CD59 on complement activation after immunotherapeutic treatment of cervical carcinoma cells with monoclonal antibodies or bispecific monoclonal antibodies. Lab Invest 2002; 82: 483–493.

    Article  CAS  PubMed  Google Scholar 

  24. Klepfish A, Gilles L, Ioannis K, Rachmilewitz EA, Schattner A . Enhancing the action of rituximab in chronic lymphocytic leukemia by adding fresh frozen plasma: complement/rituximab interactions & clinical results in refractory CLL. Ann NY Acad Sci 2009; 1173: 865–873.

    Article  CAS  PubMed  Google Scholar 

  25. Klepfish A, Rachmilewitz EA, Kotsianidis I, Patchenko P, Schattner A . Adding fresh frozen plasma to rituximab for the treatment of patients with refractory advanced CLL. QJM 2008; 101: 737–740.

    Article  CAS  PubMed  Google Scholar 

  26. Tedesco F, Bulla B, Fischetti F . Terminal complement complex: regulation of formation and pathophysiological function. In: Szebeni J ed The Complement System: Novel Rules in Health and Disease, pp 97–127 2004.

  27. Garred P, Hetland G, Mollnes TE, Stoervold G . Synthesis of C3, C5, C6, C7, C8, and C9 by human fibroblasts. Scand J Immunol 1990; 32: 555–560.

    Article  CAS  PubMed  Google Scholar 

  28. Langeggen H, Pausa M, Johnson E, Casarsa C, Tedesco F . The endothelium is an extrahepatic site of synthesis of the seventh component of the complement system. Clin Exp Immunol 2000; 121: 69–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Langeggen H, Berge KE, Macor P, Fischetti F, Tedesco F, Hetland G et al. Detection of mRNA for the terminal complement components C5, C6, C8 and C9 in human umbilical vein endothelial cells in vitro. APMIS 2001; 109: 73–78.

    Article  CAS  PubMed  Google Scholar 

  30. Gelderman KA, Tomlinson S, Ross GD, Gorter A . Complement function in mAb-mediated cancer immunotherapy. Trends Immunol 2004; 25: 158–164.

    Article  CAS  PubMed  Google Scholar 

  31. Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M . Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 2003; 40: 109–123.

    Article  CAS  PubMed  Google Scholar 

  32. Ziller F, Macor P, Bulla R, Sblattero D, Marzari R, Tedesco F . Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement-regulatory proteins CD55 and CD59. Eur J Immunol 2005; 35: 2175–2183.

    Article  CAS  PubMed  Google Scholar 

  33. Macor P, Tripodo C, Zorzet S, Piovan E, Bossi F, Marzari R et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res 2007; 67: 10556–10563.

    Article  CAS  PubMed  Google Scholar 

  34. Golay J, Manganini M, Facchinetti V, Gramigna R, Broady R, Borleri G et al. Rituximab-mediated antibody-dependent cellular cytotoxicity against neoplastic B cells is stimulated strongly by interleukin-2. Haematologica 2003; 88: 1002–1012.

    CAS  PubMed  Google Scholar 

  35. Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 2000; 95: 3900–3908.

    CAS  PubMed  Google Scholar 

  36. Di Gaetano N, Cittera E, Nota R, Vecchi A, Grieco V, Scanziani E et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol 2003; 171: 1581–1587.

    Article  CAS  PubMed  Google Scholar 

  37. Di Niro R, Ziller F, Florian F, Crovella S, Stebel M, Bestagno M et al. Construction of miniantibodies for the in vivo study of human autoimmune diseases in animal models. BMC Biotechnol 2007; 7: 46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005; 23: 584–590.

    Article  CAS  PubMed  Google Scholar 

  39. Hanke T, Szawlowski P, Randall RE . Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. J Gen Virol 1992; 73 (Pt 3): 653–660.

    Article  CAS  PubMed  Google Scholar 

  40. Boscolo S, Mion F, Licciulli M, Macor P, De Maso L, Brce M et al. Simple scale-up of recombinant antibody production using an UCOE containing vector. N Biotechnol 2012; 29: 477–484.

    Article  CAS  PubMed  Google Scholar 

  41. Macor P, Mezzanzanica D, Cossetti C, Alberti P, Figini M, Canevari S et al. Complement activated by chimeric anti-folate receptor antibodies is an efficient effector system to control ovarian carcinoma. Cancer Res 2006; 66: 3876–3883.

    Article  CAS  PubMed  Google Scholar 

  42. Mezzaroba N, Zorzet S, Secco E, Biffi S, Tripodo C, Calvaruso M et al. New potential therapeutic approach for the treatment of B-Cell malignancies using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles. PLoS One 2013; 8: e74216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Biffi S, Garrovo C, Macor P, Tripodo C, Zorzet S, Secco E et al. In vivo biodistribution and lifetime analysis of cy5.5-conjugated rituximab in mice bearing lymphoid tumor xenograft using time-domain near-infrared optical imaging. Mol Imaging 2008; 7: 272–282.

    Article  CAS  PubMed  Google Scholar 

  44. Biffi S, Dal Monego S, Dullin C, Garrovo C, Bosnjak B, Licha K et al. Dendritic polyglycerolsulfate near infrared fluorescent (NIRF) dye conjugate for non-invasively monitoring of inflammation in an allergic asthma mouse model. PLoS One 2013; 8: e57150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ridgway JB, Presta LG, Carter P . 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996; 9: 617–621.

    Article  CAS  PubMed  Google Scholar 

  46. Reed CD, Rast H, Hu WG, Mah D, Nagata L, Masri SA . Expression of furin-linked Fab fragments against anthrax toxin in a single mammalian expression vector. Protein Expr Purif 2007; 54: 261–266.

    Article  CAS  PubMed  Google Scholar 

  47. Funakoshi S, Longo DL, Murphy WJ . Differential in vitro and in vivo antitumor effects mediated by anti-CD40 and anti-CD20 monoclonal antibodies against human B-cell lymphomas. J Immunother Emphasis Tumor Immunol 1996; 19: 93–101.

    Article  CAS  PubMed  Google Scholar 

  48. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 2003; 101: 1045–1052.

    Article  CAS  PubMed  Google Scholar 

  49. Cragg MS, Glennie MJ . Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents. Blood 2004; 103: 2738–2743.

    Article  CAS  PubMed  Google Scholar 

  50. Gunn L, Ding C, Liu M, Ma Y, Qi C, Cai Y et al. Opposing roles for complement component C5a in tumor progression and the tumor microenvironment. J Immunol 2012; 189: 2985–2994.

    Article  CAS  PubMed  Google Scholar 

  51. Dobrina A, Pausa M, Fischetti F, Bulla R, Vecile E, Ferrero E et al. Cytolytically inactive terminal complement complex causes transendothelial migration of polymorphonuclear leukocytes in vitro and in vivo. Blood 2002; 99: 185–192.

    Article  CAS  PubMed  Google Scholar 

  52. Markiewski MM, DeAngelis RA, Benencia F, Ricklin-Lichtsteiner SK, Koutoulaki A, Gerard C et al. Modulation of the antitumor immune response by complement. Nat Immunol 2008; 9: 1225–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Regione Friuli Venezia Giulia (Linfonet and AITT—to FT), the Italian Association for Cancer Research (AIRC Project no. 12965/2012—to PM), Fondazione Kathleen Foreman Casali—Trieste (to PM) and Fondazione Sanpaolo (to DS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P Macor or D Sblattero.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macor, P., Secco, E., Mezzaroba, N. et al. Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice. Leukemia 29, 406–414 (2015). https://doi.org/10.1038/leu.2014.185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.185

This article is cited by

Search

Quick links