Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The emerging roles of DOT1L in leukemia and normal development

Abstract

Methylation of lysines within histone proteins represents a posttranslational modification system that can have profound effects on gene expression. An evolutionarily conserved, but poorly understood, histone methylation mark occurs on lysine 79 on histone H3 (H3K79). The H3K79 methyltransferase, DOT1L, is involved in a number of key processes ranging from gene expression to DNA-damage response and cell cycle progression. Recently, DOT1L has also been implicated in the development of mixed lineage leukemia (MLL)-rearranged leukemia, where mistargeting of DOT1L causes aberrant H3K79 methylation at homeobox genes. As DOT1L is essential for leukemic transformation, small-molecule inhibitors of DOT1L function are an attractive therapeutic target for this type of leukemia. However, in order to develop safe treatments, it is necessary to also understand the biological functions of DOT1L. Here we review the various functions of DOT1L in normal mammalian development. Dot1L knockout is embryonic lethal in mice and is important for processes as diverse as proliferation of mouse embryonic stem cells, induced and natural reprogramming, cardiac development and chondrogenesis. Additionally, while an important role for DOT1L in embryonic hematopoiesis is clear, its role in postnatal hematopoiesis is less so. Establishing the precise function of DOT1L in normal adult hematopoiesis and understanding its mode of action will aid in our understanding of the use of DOT1L as a therapeutic target in MLL-rearranged leukemia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Bird A . Perceptions of epigenetics. Nature 2007; 447: 396–398.

    Article  CAS  PubMed  Google Scholar 

  2. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A . An operational definition of epigenetics. Genes Dev 2009; 23: 781–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greer EL, Shi Y . Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13: 343–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 2002; 12: 1052–1058.

    Article  CAS  PubMed  Google Scholar 

  5. Singer MS, Kahana A, Wolf AJ, Meisinger LL, Peterson SE, Goggin C et al. Identification of high-copy disruptors of telomeric silencing in Saccharomyces cerevisiae. Genetics 1998; 150: 613–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lacoste N, Utley RT, Hunter JM, Poirier GG, Côte J . Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 2002; 277: 30421–30424.

    Article  CAS  PubMed  Google Scholar 

  7. Van Leeuwen F, Gafken PPR, Gottschling DE DE . Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 2002; 109: 745–756.

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen A, Zhang Y . The diverse functions of Dot1 and H3K79 methylation. Genes Dev 2011; 3: 1345–1358.

    Article  Google Scholar 

  9. Kim W, Choi M, Kim J-E . The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 2014; 13: 726–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D et al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 2008; 28: 2825–2839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tatum D, Li S . Evidence that the histone methyltransferase Dot1 mediates global genomic repair by methylating histone H3 on lysine 79. J Biol Chem 2011; 286: 17530–17535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell 2009; 35: 626–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

    Article  CAS  PubMed  Google Scholar 

  14. Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y . Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8: 1017–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daigle SR, Olhava EJ, Therkelsen Ca, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen L, Deshpande AJ, Banka D, Bernt KM, Dias S, Buske C et al. Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 2013; 27: 813–822.

    Article  CAS  PubMed  Google Scholar 

  17. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA et al. Potent inhibition of DOT1L as treatment for MLL-fusion leukemia. Blood 2013; 122: 1017–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans MJ, Kaufman MH . Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156.

    Article  CAS  PubMed  Google Scholar 

  19. Martin GR . Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S et al. The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 2008; 4: e1000190.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Barry ER, Krueger W, Jakuba CM, Veilleux E, Ambrosi DJ, Nelson CE et al. ES cell cycle progression and differentiation require the action of the histone methyltransferase Dot1L. Stem Cells 2009; 27: 1538–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Savatier P, Lapillonne H, Van Grunsven LA, Rudkin BB, Samarut J . Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 1996; 12: 309–322.

    CAS  PubMed  Google Scholar 

  23. Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS . Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev 2012; 22: 37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim W, Kim R, Park G, Park J-W, Kim J-E . Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem 2012; 287: 5588–5599.

    Article  CAS  PubMed  Google Scholar 

  25. Chang M-J, Wu H, Achille NJ, Reisenauer MR, Chou C-W, Zeleznik-Le NJ et al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res 2010; 70: 10234–10242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov AV et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011; 20: 66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jo SY, Granowicz EM, Maillard I, Thomas D, Hess JL . Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 2011; 117: 4759–4768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen AT, Xiao B, Neppl RL, Kallin EM, Li J, Chen T et al. DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 2011; 25: 263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ho L-L, Sinha A, Verzi M, Bernt KM, Armstrong S, Shivdasani Ra . DOT1L-mediated H3K79 methylation in chromatin is dispensable for Wnt pathway-specific and other intestinal epithelial functions. Mol Cell Biol 2013; 33: 1735–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Orkin SH . Embryonic stem cell-specific signatures in cancer: insights into genomic regulatory networks and implications for medicine. Genome Med 2011; 3: 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Onder TTT, Kara N, Cherry A, Sinha AUA, Zhu N, Bernt KM et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012; 483: 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  33. Ooga M, Inoue A, Kageyama S, Akiyama T, Nagata M, Aoki F . Changes in H3K79 methylation during preimplantation development in mice. Biol Reprod 2008; 78: 413–424.

    Article  CAS  PubMed  Google Scholar 

  34. Ontoso D, Kauppi L, Keeney S, San-Segundo PA . Dynamics of DOT1L localization and H3K79 methylation during meiotic prophase I in mouse spermatocytes. Chromosoma 2013; 123: 147–164.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shanower Ga, Muller M, Blanton JL, Honti V, Gyurkovics H, Schedl P . Characterization of the grappa gene, the Drosophila histone H3 lysine 79 methyltransferase. Genetics 2005; 169: 173–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang W, Hayashizaki Y, Kone BBC . Structure and regulation of the mDot1 gene, a mouse histone H3 methyltransferase. Biochem J 2004; 377: 1–36.

    Article  Google Scholar 

  37. Feng Y, Yang Y . Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood 2010; 116: 4483–4491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hove JR, Köster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M . Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 2003; 421: 172–177.

    Article  CAS  PubMed  Google Scholar 

  39. Illi B, Scopece A, Nanni S, Farsetti A, Morgante L, Biglioli P et al. Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress. Circ Res 2005; 96: 501–508.

    Article  CAS  PubMed  Google Scholar 

  40. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013; 498: 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu B, Zheng Y, Pham A-D, Mandal SS, Erdjument-Bromage H, Tempst P et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 2005; 20: 601–611.

    Article  CAS  PubMed  Google Scholar 

  42. Castaño MC, Cailotto F, Kerkhof HJ, Cornelis FMF . Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci 2012; 109: 8218–8223.

    Article  Google Scholar 

  43. Lin Y-W, Aplan PD . Leukemic transformation. Cancer Biol Ther 2004; 3: 13–20.

    Article  CAS  PubMed  Google Scholar 

  44. Barry ER, Corry GN, Rasmussen TP . Targeting DOT1L action and interactions in leukemia: the role of DOT1L in transformation and development. Expert Opin Ther Targets 2010; 14: 405–418.

    Article  CAS  PubMed  Google Scholar 

  45. Walsh J, DeKoter R, Lee H, Smith E . Cooperative and antagonistic interplay between PU. 1 and GATA-2 in the specification of myeloid cell fates. Immunity 2002; 17: 665–676.

    Article  CAS  PubMed  Google Scholar 

  46. Nguyen AT, He J, Taranova O, Zhang Y . Essential role of DOT1L in maintaining normal adult hematopoiesis. Cell Res 2011; 21: 1370–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Katzav S, Martin-Zanca D, Barbacid M . vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J 1989; 8: 2283–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu W, Chory EJ, Wernimont AK, Tempel W, Scopton A, Federation A et al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors. Nat Commun 2012; 3: 1288.

    Article  PubMed  Google Scholar 

  49. Sharma SV, Settleman J . Exploiting the balance between life and death: targeted cancer therapy and ‘oncogenic shock’. Biochem Pharmacol 2010; 80: 666–673.

    Article  CAS  PubMed  Google Scholar 

  50. Stulemeijer IJE, Pike BL, Faber AW, Verzijlbergen KF, Welsem T, Van, Frederiks F et al. Dot1 binding induces chromatin rearrangements by histone methylation- dependent and -independent mechanisms. Epigenetics Chromatin 2011; 4: 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ooga M, Suzuki MG, Aoki F . Involvement of DOT1L in the remodeling of heterochromatin configuration during early preimplantation development in mice. Biol Reprod 2013; 89: 1–10.

    Article  Google Scholar 

  52. Kim S-K, Jung I, Lee H, Kang K, Kim M, Jeong K et al. Human histone H3K79 methyltransferase DOT1L protein binds actively transcribing RNA polymerase II to regulate gene expression. J Biol Chem 2012; 287: 39698–39709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schübeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 2004; 18: 1263–1271.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang W, Xia X, Jalal D . Aldosterone-sensitive repression of ENaCα transcription by a histone H3 lysine-79 methyltransferase. Am J Physiol Cell Physiol 2006; 77030: 936–946.

    Article  Google Scholar 

  55. Cecere G, Hoersch S, Jensen MB, Dixit S, Grishok A . The ZFP-1(AF10)/DOT-1 complex opposes H2B ubiquitination to reduce Pol II transcription. Mol Cell 2013; 50: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu X, Simon MD, Chodaparambil JV, Hansen JC, Shokat KM, Luger K . The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 2008; 15: 1122–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sabra M, Texier P, El Maalouf J, Lomonte P . The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126: 3664–3677.

    Article  CAS  PubMed  Google Scholar 

  58. Monani UR . Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 2005; 48: 885–896.

    Article  CAS  PubMed  Google Scholar 

  59. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500: 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohan M, Herz H-M, Takahashi Y-H, Lin C, Lai KC, Zhang Y et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev 2010; 24: 574–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahmoudi T, Boj SF, Hatzis P, Li VSW, Taouatas N, Vries RGJ et al. The leukemia-associated Mllt10/Af10-Dot1l are Tcf4/β-catenin coactivators essential for intestinal homeostasis. PLoS Biol 2010; 8: e1000539.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Matsuura K, Fujimoto K, Das B, Fu L, Lu CD, Shi Y . Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell Biosci 2012; 2: 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tata JR . Amphibian metamorphosis: An exquisite model for hormonal regulation of postembryonic development in vertebrates. Dev Growth Differ 1996; 38: 223–231.

    Article  CAS  Google Scholar 

  64. List O, Togawa T, Tsuda M, Matsuo T, Elard L, Aigaki T . Overexpression of grappa encoding a histone methyltransferase enhances stress resistance in Drosophila. Hereditas 2009; 146: 19–28.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the van Leeuwen lab for discussions and Heinz Jacobs for critical reading of the manuscript. CMM and FvL were supported by the Dutch Cancer Society (KWF 2009-4511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F van Leeuwen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

All authors have contributed to writing the manuscript. All authors have read and approved the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLean, C., Karemaker, I. & van Leeuwen, F. The emerging roles of DOT1L in leukemia and normal development. Leukemia 28, 2131–2138 (2014). https://doi.org/10.1038/leu.2014.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.169

This article is cited by

Search

Quick links