Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation

Abstract

Chronic lymphocytic leukemia (CLL) is characterized by accumulation of clonal B cells arrested in G0/G1 stages that coexist, in different proportions, with proliferative B cells. Understanding the crosstalk between the proliferative subsets and their milieu could provide clues on CLL biology. We previously identified one of these subpopulations in the peripheral blood from unmutated patients that appears to be a hallmark of a progressive disease. Aiming to characterize the molecular mechanism underlying this proliferative behavior, we performed gene expression analysis comparing the global mRNA and microRNA expression of this leukemic subpopulation, and compared it with their quiescent counterparts. Our results suggest that proliferation of this fraction depend on microRNA-22 overexpression that induces phosphatase and tensin homolog downregulation and phosphoinositide 3-kinase (PI3K)/AKT pathway activation. Transfection experiments demonstrated that miR-22 overexpression in CLL B cells switches on PI3K/AKT, leading to downregulation of p27−Kip1 and overexpression of Survivin and Ki-67 proteins. We also demonstrated that this pathway could be triggered by microenvironment signals like CD40 ligand/interleukin-4 and, more importantly, that this regulatory loop is also present in lymph nodes from progressive unmutated patients. Altogether, these results underline the key role of PI3K/AKT pathway in the generation of the CLL proliferative pool and provide additional rationale for the usage of PI3K inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dighiero G, Hamblin TJ . Chronic lymphocytic leukaemia. Lancet 2008; 371: 1017–1029.

    CAS  PubMed  Google Scholar 

  2. Caligaris-Cappio F, Bertilaccio MT, Scielzo C . How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol 2013; 24: 43–48.

    Article  PubMed  Google Scholar 

  3. Cho WC . MicroRNAs in cancer - from research to therapy. Biochim Biophys Acta 2010; 1805: 209–217.

    CAS  PubMed  Google Scholar 

  4. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  5. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 2002; 32: 1403–1413.

    Article  CAS  PubMed  Google Scholar 

  6. Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F . The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 2009; 114: 3367–3375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pepper C, Ward R, Lin TT, Brennan P, Starczynski J, Musson M et al. Highly purified CD38+ and CD38- sub-clones derived from the same chronic lymphocytic leukemia patient have distinct gene expression signatures despite their monoclonal origin. Leukemia 2007; 21: 687–696.

    Article  CAS  PubMed  Google Scholar 

  8. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal Bo M, Marconi D et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 2009; 69: 4001–4009.

    Article  CAS  PubMed  Google Scholar 

  9. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  CAS  PubMed  Google Scholar 

  10. Palacios F, Moreno P, Morande P, Abreu C, Correa A, Porro V et al. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease. Blood 2010; 115: 4488–4496.

    Article  CAS  PubMed  Google Scholar 

  11. Sanchez-Beato M, Saez AI, Martinez-Montero JC, Sol Mateo M, Sanchez-Verde L, Villuendas R et al. Cyclin-dependent kinase inhibitor p27KIP1 in lymphoid tissue: p27KIP1 expression is inversely proportional to the proliferative index. Am J Pathol 1997; 151: 151–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 2007; 110: 3352–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calissano C, Damle RN, Marsilio S, Yan XJ, Yancopoulos S, Hayes G et al. Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol Med 2011; 17: 1374–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oppezzo P, Vuillier F, Vasconcelos Y, Dumas G, Magnac C, Payelle-Brogard B et al. Chronic lymphocytic leukemia B cells expressing AID display a dissociation between class switch recombination and somatic hypermutation. Blood 2003; 9: 9.

    Google Scholar 

  15. Oppezzo P, Dumas G, Lalanne AI, Payelle-Brogard B, Magnac C, Pritsch O et al. Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells. Blood 2005; 105: 2495–2503.

    Article  CAS  PubMed  Google Scholar 

  16. Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    CAS  PubMed  Google Scholar 

  17. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moreno P, Abreu C, Borge M, Palacios F, Morande P, Pegazzano M et al. Lipoprotein lipase expression in unmutated CLL patients is the consequence of a demethylation process induced by the microenvironment. Leukemia 2013; 27: 721–725.

    Article  CAS  PubMed  Google Scholar 

  20. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  21. Bar N, Dikstein R . miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One 2010; 5: e10859.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010; 116: 2078–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 2002; 168: 5024–5031.

    Article  CAS  PubMed  Google Scholar 

  24. Medema RH, Kops GJ, Bos JL, Burgering BM . AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000; 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  25. Vrhovac R, Delmer A, Tang R, Marie JP, Zittoun R, Ajchenbaum-Cymbalista F . Prognostic significance of the cell cycle inhibitor p27Kip1 in chronic B-cell lymphocytic leukemia. Blood 1998; 91: 4694–4700.

    CAS  PubMed  Google Scholar 

  26. Chakrabarty A, Bhola NE, Sutton C, Ghosh R, Kuba MG, Dave B et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res 2013; 73: 1190–1200.

    Article  CAS  PubMed  Google Scholar 

  27. Greer EL, Brunet A . FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410–7425.

    Article  CAS  PubMed  Google Scholar 

  28. Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 2007; 21: 110–120.

    Article  CAS  PubMed  Google Scholar 

  29. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  PubMed  Google Scholar 

  30. Cully M, You H, Levine AJ, Mak TW . Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6: 184–192.

    Article  CAS  PubMed  Google Scholar 

  31. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  32. Liu L, Jiang Y, Zhang H, Greenlee AR, Yu R, Yang Q . miR-22 functions as a micro-oncogene in transformed human bronchial epithelial cells induced by anti-benzo[a]pyrene-7,8-diol-9,10-epoxide. Toxicol In Vitro 2010; 24: 1168–1175.

    Article  CAS  PubMed  Google Scholar 

  33. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al. Identification of the miR-106b25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 2010; 3: ra29.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shehata M, Schnabl S, Demirtas D, Hilgarth M, Hubmann R, Ponath E et al. Reconstitution of PTEN activity by CK2 inhibitors and interference with the PI3-K/Akt cascade counteract the antiapoptotic effect of human stromal cells in chronic lymphocytic leukemia. Blood 2010; 116: 2513–2521.

    Article  CAS  PubMed  Google Scholar 

  35. Lupp S, Gumhold C, Ampofo E, Montenarh M, Rother K . CK2 kinase activity but not its binding to CK2 promoter regions is implicated in the regulation of CK2alpha and CK2beta gene expressions. Mol Cell Biochem 2013; 384: 71–82.

    Article  CAS  PubMed  Google Scholar 

  36. Zou ZJ, Zhang R, Fan L, Wang L, Fang C, Zhang LN et al. Low expression level of phosphatase and tensin homolog deleted on chromosome ten predicts poor prognosis in chronic lymphocytic leukemia. Leuk Lymphoma 2013; 54: 1159–1164.

    Article  CAS  PubMed  Google Scholar 

  37. Xie L, Ushmorov A, Leithauser F, Guan H, Steidl C, Farbinger J et al. FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 2012; 119: 3503–3511.

    Article  CAS  PubMed  Google Scholar 

  38. Essafi M, Baudot AD, Mouska X, Cassuto JP, Ticchioni M, Deckert M . Cell-penetrating TAT-FOXO3 fusion proteins induce apoptotic cell death in leukemic cells. Mol Cancer Ther 2011; 10: 37–46.

    Article  CAS  PubMed  Google Scholar 

  39. Ho WC, Pikor L, Gao Y, Elliott BE, Greer PA . Calpain 2 regulates Akt-FoxO-p27(Kip1) protein signaling pathway in mammary carcinoma. J Biol Chem 2012; 287: 15458–15465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiong J . Emerging roles of microRNA-22 in human disease and normal physiology. Curr Mol Med 2012; 12: 247–258.

    Article  CAS  PubMed  Google Scholar 

  41. Koff A . How to decrease p27Kip1 levels during tumor development. Cancer Cell 2006; 9: 75–76.

    Article  CAS  PubMed  Google Scholar 

  42. Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfo L, Rossi C et al. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 2010; 115: 3949–3959.

    Article  CAS  PubMed  Google Scholar 

  43. Martins LR, Lucio P, Silva MC, Anderes KL, Gameiro P, Silva MG et al. Targeting CK2 overexpression and hyperactivation as a novel therapeutic tool in chronic lymphocytic leukemia. Blood 2010; 116: 2724–2731.

    Article  CAS  PubMed  Google Scholar 

  44. Benson RJ, Hostager BS, Bishop GA . Rapid CD40-mediated rescue from CD95-induced apoptosis requires TNFR-associated factor-6 and PI3K. Eur J Immunol 2006; 36: 2535–2543.

    Article  CAS  PubMed  Google Scholar 

  45. Tai YT, Li X, Tong X, Santos D, Otsuki T, Catley L et al. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma. Cancer Res 2005; 65: 5898–5906.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao P, Meng Q, Liu LZ, You YP, Liu N, Jiang BH . Regulation of survivin by PI3K/Akt/p70S6K1 pathway. Biochem Biophys Res Commun 2010; 395: 219–224.

    Article  CAS  PubMed  Google Scholar 

  47. Asanuma H, Torigoe T, Kamiguchi K, Hirohashi Y, Ohmura T, Hirata K et al. Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-kinase/AKT signaling pathway in breast cancer cells. Cancer Res 2005; 65: 11018–11025.

    Article  CAS  PubMed  Google Scholar 

  48. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O'Connor DS, Li F et al. Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 2000; 275: 9102–9105.

    Article  CAS  PubMed  Google Scholar 

  49. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fukuda S, Singh P, Moh A, Abe M, Conway EM, Boswell HS et al. Survivin mediates aberrant hematopoietic progenitor cell proliferation and acute leukemia in mice induced by internal tandem duplication of Flt3. Blood 2009; 114: 394–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li C, Yan Y, Ji W, Bao L, Qian H, Chen L et al. OCT4 positively regulates Survivin expression to promote cancer cell proliferation and leads to poor prognosis in esophageal squamous cell carcinoma. PLoS One 2012; 7: e49693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martinez A, Bellosillo B, Bosch F, Ferrer A, Marce S, Villamor N et al. Nuclear survivin expression in mantle cell lymphoma is associated with cell proliferation and survival. Am J Pathol 2004; 164: 501–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marton S, Garcia MR, Robello C, Persson H, Trajtenberg F, Pritsch O et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 2008; 22: 330–338.

    Article  CAS  PubMed  Google Scholar 

  54. Rodon J, Dienstmann R, Serra V, Tabernero J . Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013; 10: 143–153.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from ANII: Fondo Clemente Estable (FCE-7273) and Fondo Maria Viña (FMV-7323). This work was partially funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, FOCEM (MERCOSUR Structural Convergence Fund), COF 03/11 and CYTED Program. We thank Dr Alfonso Cayota for his help in the microRNA technologies, the Cell Biology Unit of the Institut Pasteur de Montevideo for their technical assistance in cell sorting analysis and Mrs Ivana Faccini for her helpful assistance with the manuscript correction. We also thank the patients with CLL for their cooperation and help in providing invaluable blood samples for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Oppezzo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions

FP, CA, DP, PM and SR performed experiments and collected CLL samples; TF-C, HN, GL and CR performed microarrays and statistical analysis; ANL, GD and RG performed clinical activities and data collection of CLL patients; PO and GD contributed to scientific design and revised the paper; PO and FP designed research, coordinated the study and data analysis and wrote the paper.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, F., Abreu, C., Prieto, D. et al. Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation. Leukemia 29, 115–125 (2015). https://doi.org/10.1038/leu.2014.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.158

This article is cited by

Search

Quick links