Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis

Abstract

Acute myeloid leukemia (AML) primary cells express high levels of phosphorylated Akt, a master regulator of cellular functions regarded as a promising drug target. By means of reverse phase protein arrays, we examined the response of 80 samples of primary cells from AML patients to selective inhibitors of the phosphatidylinositol 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis. We confirm that >60% of the samples analyzed are characterized by high pathway phosphorylation. Unexpectedly, however, we show here that targeting Akt and mTOR with the specific inhibitors Akti 1/2 and Torin1, alone or in combination, result in paradoxical Akt phosphorylation and activation of downstream signaling in 70% of the samples. Indeed, we demonstrate that cropping Akt or mTOR activity can stabilize the Akt/mTOR downstream effectors Forkhead box O and insulin receptor substrate-1, which in turn potentiate signaling through upregulation of the expression/phosphorylation of selected growth factor receptor tyrosine kinases (RTKs). Activation of RTKs in turn reactivates PI3K and downstream signaling, thus overruling the action of the drugs. We finally demonstrate that dual inhibition of Akt and RTKs displays strong synergistic cytotoxic effects in AML cells and downmodulates Akt signaling to a much greater extent than either drug alone, and should therefore be explored in AML clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Theilgaard-Mönch K, Boultwood J, Ferrari S, Giannopoulos K, Hernandez-Rivas JM et al. Gene expression profiling in MDS and AML: potential and future avenues. Leukemia 2011; 25: 909–920.

    Article  PubMed  Google Scholar 

  2. Ferrara F, Schiffer CA . Acute myeloid leukaemia in adults. Lancet 2013; 9: 484–495.

    Article  Google Scholar 

  3. Leung AY, Man CH, Kwong YL . FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. Leukemia 2013; 27: 260–268.

    Article  CAS  PubMed  Google Scholar 

  4. Bai Y, Bandara G, Ching Chan E, Maric I, Simakova O, Bandara SN et al. Targeting the KIT activating switch control pocket: a novel mechanism to inhibit neoplastic mast cell proliferation and mast cell activation. Leukemia 2013; 27: 278–285.

    Article  CAS  PubMed  Google Scholar 

  5. Doepfner KT, Boller D, Arcaro A . Targeting receptor tyrosine kinase signaling in acute myeloid leukemia. Crit Rev Oncol Hematol 2007; 3: 215–230.

    Article  Google Scholar 

  6. Martelli AM, Evangelisti C, Chiarini F, McCubrey JA . The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 2010; 1: 89–103.

    PubMed  PubMed Central  Google Scholar 

  7. Kornblau SM, Tibes R, Qiu YH, Chen W, Kantarjian HM, Andreeff M et al. Functional proteomic profiling of AML predicts response and survival. Blood 2009; 113: 154–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vivanco I, Sawyers CL . The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  9. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  10. Pearce LR, Komander D, Alessi DR . The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 2010; 11: 9–22.

    Article  CAS  PubMed  Google Scholar 

  11. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  12. Feng J, Park J, Cron P, Hess D, Hemmings BA . Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 2004; 279: 41189–41196.

    Article  CAS  PubMed  Google Scholar 

  13. Guertin DA, Sabatini DM . The pharmacology of mTOR inhibition. Science Sci 2009; 2: pe24.

    Google Scholar 

  14. Zeng Z, Shi YX, Tsao T, Qiu Y, Kornblau SM, Baggerly KA et al. Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood 2012; 120: 2679–2689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Papa V, Tazzari PL, Chiarini F, Cappellini A, Ricci F, Billi AM et al. Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 2008; 22: 147–160.

    Article  CAS  PubMed  Google Scholar 

  16. Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 2012; 26: 1195–1202.

    Article  CAS  PubMed  Google Scholar 

  17. Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C, Tabellini G et al. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2014; 28: 739–748.

    Article  CAS  PubMed  Google Scholar 

  18. Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GP, Brandhuber BJ . Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 2010; 5: e12913.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park S, Chapuis N, Saint Marcoux F, Recher C, Prebet T, Chevallier P et al. A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse. Leukemia 2013; 27: 1479–1486.

    Article  CAS  PubMed  Google Scholar 

  20. Rodon J, Dienstmann R, Serra V, Tabernero J . Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 2013; 10: 143–153.

    Article  CAS  PubMed  Google Scholar 

  21. Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013; 341: 6144.

    Article  Google Scholar 

  22. Leiphrakpam PD, Agarwal E, Mathiesen M, Haferbier KL, Brattain MG, Chowdhury S . In vivo analysis of insulin-like growth factor type 1 receptor humanized monoclonal antibody MK-0646 and small molecule kinase inhibitor OSI-906 in colorectal cancer. Oncol Rep 2013; 31: 87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cortes JE, Kantarjian H, Foran JM, Ghirdaladze D, Zodelava M, Borthakur G et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol 2013; 31: 3681–3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Maira G, Brustolon F, Bertacchini J, Tosoni K, Marmiroli S, Pinna LA et al. Pharmacological inhibition of protein kinase CK2 reverts the multidrug resistance phenotype of a CEM cell line characterized by high CK2 level. Oncogene 2007; 26: 6915–6926.

    Article  CAS  PubMed  Google Scholar 

  25. Chou TC . Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010; 70: 440–446.

    Article  CAS  PubMed  Google Scholar 

  26. Bertacchini J, Beretti F, Cenni V, Guida M, Gibellini F, Mediani L et al. The protein kinase Akt/PKB regulates both prelamin A degradation and Lmna gene expression. FASEB J 2013; 27: 2145–2155.

    Article  CAS  PubMed  Google Scholar 

  27. Maraldi T, Bertacchini J, Benincasa M, Guida M, De Pol A, Liotta LA et al. Reverse-phase protein microarrays (RPPA) as a diagnostic and therapeutic guide in multidrug resistant leukemia. Int J Oncol 2011; 38: 427–435.

    CAS  PubMed  Google Scholar 

  28. Espina V, Liotta LA, Petricoin EF 3rd . Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 2009; 520: 89–105.

    Article  CAS  PubMed  Google Scholar 

  29. Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L et al. Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica 2010; 95: 415–423.

    Article  CAS  PubMed  Google Scholar 

  30. Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA . Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs 2009; 18: 1333–1349.

    Article  CAS  PubMed  Google Scholar 

  31. Altman JK, Sassano A, Platanias LC . Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget 2011; 2: 510–517.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I et al. The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22: 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  33. Levy DS, Kahana JA, Kumar R . AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood 2009; 113: 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  34. McNamara CR, Degterev A . Small-molecule inhibitors of the PI3K signaling network. Future Med Chem 2011; 3: 549–565.

    Article  CAS  PubMed  Google Scholar 

  35. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 2011; 19: 58–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayala JE, Streeper RS, Desgrosellier JS, Durham SK, Suwanichkul A, Svitek CA et al. Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters: transcription factor FKHR binds the insulin response sequence. Diabetes 1999; 48: 1885–1889.

    Article  CAS  PubMed  Google Scholar 

  37. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  38. Petricoin EF 3rd, Espina V, Araujo RP, Midura B, Yeung C, Wan X et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 2007; 67: 3431–3440.

    Article  CAS  PubMed  Google Scholar 

  39. O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 2006; 66: 1500–1508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moritz A, Li Y, Guo A, Villén J, Wang Y, MacNeill J et al. Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases. Sci Signal 2010; 3: ra64.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC, Poulikakos PI, Scaltriti M, Moskatel E et al. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov 2011; 1: 248–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al. Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood 2008; 111: 379–382.

    Article  CAS  PubMed  Google Scholar 

  43. Klempner SJ, Myers AP, Cantley LC . What a tangled web we weave: emerging resistance mechanisms to inhibition of the phosphoinositide 3-kinase pathway. Cancer Discov 2013; 3: 1345–1354.

    Article  CAS  PubMed  Google Scholar 

  44. Schaab C, Oppermann FS, Klammer M, Pfeifer H, Tebbe A, Oellerich T et al. Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib. Leukemia 2013; 28: 716–719.

    Article  PubMed  Google Scholar 

  45. Khan I, Huang Z, Wen Q, Stankiewicz MJ, Gilles L, Goldenson B et al. AKT is a therapeutic target in myeloproliferative neoplasms. Leukemia 2013; 27: 1882–1890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F et al. Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia 2012; 26: 2336–2342.

    Article  CAS  PubMed  Google Scholar 

  47. Gunawardane RN, Nepomuceno RR, Rooks AM, Hunt JP, Ricono JM, Belli B et al. Transient exposure to quizartinib mediates sustained inhibition of FLT3 signaling while specifically inducing apoptosis in FLT3-activated leukemia cells. Mol Cancer Ther 2013; 12: 438–447.

    Article  CAS  PubMed  Google Scholar 

  48. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A . Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005; 4: 1533–1540.

    Article  CAS  PubMed  Google Scholar 

  49. Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sánchez V et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci USA 2010; 110: 14372–14377.

    Article  Google Scholar 

  50. Mei Y, Wang Z, Zhang L, Zhang Y, Li X, Liu H et al. Regulation of neuroblastoma differentiation by forkhead transcription factors FOXO1/3/4 through the receptor tyrosine kinase PDGFRA. Proc Natl Acad Sci USA 2012; 109: 4898–4903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park S, Chapuis N, Tamburini J, Bardet V, Cornillet-Lefebvre P, Willems L et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 2010; 95: 819–828.

    Article  CAS  PubMed  Google Scholar 

  52. Bozulic L, Surucu B, Hynx D, Hemmings BA . PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell 2008; 30: 203–213.

    Article  CAS  PubMed  Google Scholar 

  53. Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal 2013; 6: rs6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SM and JB acknowledge the ‘International short term mobility program’ from Italian CNR and Fondazione CaRiMo, respectively; MG was in part supported by Fondazione Angela Serra for Cancer Research, Modena, Italy. This work was supported by grants from Italian MIUR-Prin 2008, Istituto Superiore Sanita’ oncoproteome network, prot. 2011-527TR1, and MIUR/FIRB accordi di programma 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Marmiroli.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertacchini, J., Guida, M., Accordi, B. et al. Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia 28, 2197–2205 (2014). https://doi.org/10.1038/leu.2014.123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.123

This article is cited by

Search

Quick links