Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Functional integration of acute myeloid leukemia into the vascular niche

Abstract

Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the upregulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost fourfold reduction in proliferative activity compared with non-vascular-associated AML. Primary AML cells can be induced to downregulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. These novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Burnett A, Wetzler M, Lowenberg B . Therapeutic advances in acute myeloid leukemia. J Clin Oncol 2011; 29: 487–494.

    Article  PubMed  Google Scholar 

  2. Buccisano F, Maurillo L, Del Principe MI, Del Poeta G, Sconocchia G, Lo-Coco F et al. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012; 119: 332–341.

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Coussens LM . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    CAS  PubMed  Google Scholar 

  4. Lathia JD, Heddleston JM, Venere M, Rich JN . Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 2011; 8: 482–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dvorak HF, Weaver VM, Tlsty TD, Bergers G . Tumor microenvironment and progression. J Surg Oncol 2011; 103: 468–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bailey AS, Fleming WH . Converging roads: evidence for an adult hemangioblast. Exp Hematol 2003; 31: 987–993.

    Article  CAS  PubMed  Google Scholar 

  7. Cogle CR, Scott EW . The hemangioblast: cradle to clinic. Exp Hematol 2004; 32: 885–890.

    Article  PubMed  Google Scholar 

  8. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 2002; 8: 607–612.

    Article  CAS  PubMed  Google Scholar 

  9. Cogle CR, Wainman DA, Jorgensen ML, Guthrie SM, Mames RN, Scott EW . Adult human hematopoietic cells provide functional hemangioblast activity. Blood 2004; 103: 133–135.

    Article  CAS  PubMed  Google Scholar 

  10. Bailey AS, Jiang S, Afentoulis M, Baumann CI, Schroeder DA, Olson SB et al. Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 2004; 103: 13–19.

    Article  CAS  PubMed  Google Scholar 

  11. Bailey AS, Willenbring H, Jiang S, Anderson DA, Schroeder DA, Wong MH et al. Myeloid lineage progenitors give rise to vascular endothelium. Proc Natl Acad Sci USA 2006; 103: 13156–13161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Madlambayan GJ, Butler JM, Hosaka K, Jorgensen M, Fu D, Guthrie SM et al. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood 2009; 114: 4310–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  14. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    Article  CAS  PubMed  Google Scholar 

  15. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Butler JM, Nolan DJ, Vertes EL, Varnum-Finney B, Kobayashi H, Hooper AT et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010; 6: 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding L, Saunders TL, Enikolopov G, Morrison SJ . Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  19. Ribatti D . Is angiogenesis essential for the progression of hematological malignancies or is it an epiphenomenon? Leukemia 2009; 23: 433–434.

    Article  CAS  PubMed  Google Scholar 

  20. Fragioudaki M, Tsirakis G, Pappa CA, Aristeidou I, Tsioutis C, Alegakis A et al. Serum BAFF levels are related to angiogenesis and prognosis in patients with multiple myeloma. Leuk Res 2012; 36: 1004–1008.

    Article  CAS  PubMed  Google Scholar 

  21. Korkolopoulou P, Thymara I, Kavantzas N, Vassilakopoulos TP, Angelopoulou MK, Kokoris SI et al. Angiogenesis in Hodgkin's lymphoma: a morphometric approach in 286 patients with prognostic implications. Leukemia 2005; 19: 894–900.

    Article  CAS  PubMed  Google Scholar 

  22. Lundberg LG, Hellstrom-Lindberg E, Kanter-Lewensohn L, Lerner R, Palmblad J . Angiogenesis in relation to clinical stage, apoptosis and prognostic score in myelodysplastic syndromes. Leuk Res 2006; 30: 247–253.

    Article  PubMed  Google Scholar 

  23. Rajkumar SV, Greipp PR . Angiogenesis in multiple myeloma. Br J Haematol 2001; 113: 565.

    Article  CAS  PubMed  Google Scholar 

  24. Hatfield K, Oyan AM, Ersvaer E, Kalland KH, Lassalle P, Gjertsen BT et al. Primary human acute myeloid leukaemia cells increase the proliferation of microvascular endothelial cells through the release of soluble mediators. Br J Haematol 2009; 144: 53–68.

    Article  CAS  PubMed  Google Scholar 

  25. Hatfield K, Ryningen A, Corbascio M, Bruserud O . Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts. Int J Cancer 2006; 119: 2313–2321.

    Article  CAS  PubMed  Google Scholar 

  26. Hatfield KJ, Evensen L, Reikvam H, Lorens JB, Bruserud O . Soluble mediators released by acute myeloid leukemia cells increase capillary-like networks. Eur J Haematol 2012; 89: 478–490.

    Article  CAS  PubMed  Google Scholar 

  27. Liesveld JL, Rosell KE, Lu C, Bechelli J, Phillips G, Lancet JE et al. Acute myelogenous leukemia—microenvironment interactions: role of endothelial cells and proteasome inhibition. Hematology 2005; 10: 483–494.

    Article  CAS  PubMed  Google Scholar 

  28. Trujillo A, McGee C, Cogle CR . Angiogenesis in acute myeloid leukemia and opportunities for novel therapies. J Oncol 2012; 2012: 128608.

    Article  PubMed  Google Scholar 

  29. Critser PJ, Yoder MC . Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr Opin Organ Transplant 2010; 15: 68–72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4: 263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Overturf K, Al-Dhalimy M, Tanguay R, Brantly M, Ou CN, Finegold M et al. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I. Nat Genet 1996; 12: 266–273.

    Article  CAS  PubMed  Google Scholar 

  32. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001; 97: 89–94.

    Article  CAS  PubMed  Google Scholar 

  33. Fritz J, Vogel W, Bares R, Horger M . Radiologic spectrum of extramedullary relapse of myelogenous leukemia in adults. AJR Am J Roentgenol 2007; 189: 209–218.

    Article  PubMed  Google Scholar 

  34. Navarro M, Crespo C, Perez L, Martinez C, Galant J, Gonzalez I . Massive intrahepatic extramedullary hematopoiesis in myelofibrosis. Abdom Imaging 2000; 25: 184–186.

    Article  CAS  PubMed  Google Scholar 

  35. Sozer S, Fiel MI, Schiano T, Xu M, Mascarenhas J, Hoffman R . The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd-Chiari syndrome. Blood 2009; 113: 5246–5249.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mathews E, Laurie T, O'Riordan K, Nabhan C . Liver involvement with acute myeloid leukemia. Case Rep Gastroenterol 2008; 2: 121–124.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eisen A, Dovrish Z, Hadari R, Lew S, Amital H . Jaundice and acute liver failure as the first manifestation of acute myeloid leukemia. Isr Med Assoc J 2008; 10: 733–735.

    PubMed  Google Scholar 

  38. Barcos M, Lane W, Gomez GA, Han T, Freeman A, Preisler H et al. An autopsy study of 1206 acute and chronic leukemias (1958 to 1982). Cancer 1987; 60: 827–837.

    Article  CAS  PubMed  Google Scholar 

  39. Larrivee B, Niessen K, Pollet I, Corbel SY, Long M, Rossi FM et al. Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. J Immunol 2005; 175: 2890–2899.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang S, Walker L, Afentoulis M, Anderson DA, Jauron-Mills L, Corless CL et al. Transplanted human bone marrow contributes to vascular endothelium. Proc Natl Acad Sci USA 2004; 101: 16891–16896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kukk E, Wartiovaara U, Gunji Y, Kaukonen J, Buhring HJ, Rappold I et al. Analysis of Tie receptor tyrosine kinase in haemopoietic progenitor and leukaemia cells. Br J Haematol 1997; 98: 195–203.

    Article  CAS  PubMed  Google Scholar 

  42. Watarai M, Miwa H, Shikami M, Sugamura K, Wakabayashi M, Satoh A et al. Expression of endothelial cell-associated molecules in AML cells. Leukemia 2002; 16: 112–119.

    Article  CAS  PubMed  Google Scholar 

  43. Nassiri F, Cusimano MD, Scheithauer BW, Rotondo F, Fazio A, Yousef GM et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res 2011; 31: 2283–2290.

    CAS  PubMed  Google Scholar 

  44. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarry JE, Murphy K, Perry R, Sanchez PV, Secreto A, Keefer C et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rgammac-deficient mice. J Clin Invest 2011; 121: 384–395.

    Article  CAS  PubMed  Google Scholar 

  46. Park C, Ma YD, Choi K . Evidence for the hemangioblast. Exp Hematol 2005; 33: 965–970.

    Article  CAS  PubMed  Google Scholar 

  47. Colmone A, Sipkins DA . Beyond angiogenesis: the role of endothelium in the bone marrow vascular niche. Transl Res 2008; 151: 1–9.

    Article  CAS  PubMed  Google Scholar 

  48. Doan PL, Chute JP . The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia 2012; 26: 54–62.

    Article  CAS  PubMed  Google Scholar 

  49. Cho-Vega JH, Medeiros LJ, Prieto VG, Vega F . Leukemia cutis. Am J Clin Pathol 2008; 129: 130–142.

    Article  PubMed  Google Scholar 

  50. Pezeshkian B, Donnelly C, Tamburo K, Geddes T, Madlambayan GJ . Leukemia mediated endothelial cell activation modulates leukemia cell susceptibility to chemotherapy through a positive feedback loop mechanism. PLoS One 2013; 8: e60823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Madlambayan GJ, Meacham AM, Hosaka K, Mir S, Jorgensen M, Scott EW et al. Leukemia regression by vascular disruption and antiangiogenic therapy. Blood 2010; 116: 1539–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tyner JW, Yang WF, Bankhead A, Fan G, Fletcher LB, Bryant J et al. Kinase pathway dependence in primary human leukemias determined by rapid inhibitor screening. Cancer Res 2013; 73: 285–296.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pamela Canaday from the OHSU flow cytometry core for FACS. Funding was provided by the NIH to WHF (P30 CA069533 and R01 HL069133), CRC (K08 DK067359) and EWS (R01 HL70738). The Leukemia & Lymphoma Society also supported CRC with a Translational Research Program grant (6264-08) and a Scholar in Clinical Research award (2400-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W H Fleming.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cogle, C., Goldman, D., Madlambayan, G. et al. Functional integration of acute myeloid leukemia into the vascular niche. Leukemia 28, 1978–1987 (2014). https://doi.org/10.1038/leu.2014.109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.109

This article is cited by

Search

Quick links