Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Normal Hemopoiesis

mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells

Abstract

Hematopoietic stem/progenitor cells (HSPCs) function to give rise to mature blood cells. Effective DNA damage response (DDR) and maintenance of genomic stability are crucial for normal functioning of HSPCs. Mammalian target of rapamycin (mTOR) integrates signals from nutrients and growth factors to control protein synthesis, cell growth, survival and metabolism, and has been shown to regulate DDR in yeast and human cancer cells through the p53/p21 signaling cascade. Here, we show that gene targeting of mTOR in HSPCs causes a defective DDR due to a variety of DNA damage agents, mimicking that caused by deficient FANCD2, a key component of the Fanconi anemia (FA) DDR machinery. Mechanistically, mTOR−/− HSPCs express drastically reduced FANCD2. Consistent with these genetic findings, inactivation of mTOR in human lymphoblast cells by pp242 or Torin 1, mTOR kinase inhibitors, suppresses FANCD2 expression and causes a defective DDR that can be rescued by reconstitution of exogenous FANCD2. Further mechanistic studies show that mTOR deficiency or inactivation increases phosphorylation and nuclear translocation of nuclear factor (NF)-κB, which results in an enhanced NF-κB binding to FANCD2 promoter to suppress FANCD2 expression. Thus, mTOR regulates DDR and genomic stability in hematopoietic cells through a noncanonical pathway involving NF-κB-mediated FANCD2 expression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW . DNA repair, genome stability, and aging. Cell 2005; 120: 497–512.

    Article  CAS  PubMed  Google Scholar 

  2. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S . Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73: 39–85.

    Article  CAS  PubMed  Google Scholar 

  3. Vousden KH, Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  4. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F et al. A distinctive DNA damage response in human hematopoietic stem cell reveals an apoptosis-independent role of p53 in self-renewal. Cell Stem Cell 2010; 7: 186–197.

    Article  CAS  PubMed  Google Scholar 

  5. Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 2010; 7: 174–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kee Y, D'Andrea AD . Molecular pathogenesis and clinical management of Fanconi anemia. J Clin Invest 2012; 122: 3799–3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kitao H, Takata M . Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol 2011; 93: 417–424.

    Article  CAS  PubMed  Google Scholar 

  8. Leguit RJ, van den Tweel JG . The pathology of bone marrow failure. Histopathology 2010; 57: 655–670.

    Article  PubMed  Google Scholar 

  9. Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 2012; 11: 36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  11. Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 2007; 447: 686–690.

    Article  CAS  PubMed  Google Scholar 

  12. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL . Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447: 725–729.

    Article  CAS  PubMed  Google Scholar 

  13. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2005; 149: 274–293.

    Article  Google Scholar 

  14. Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T et al. The mTOR inhibitord RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 2005; 120: 747–759.

    CAS  PubMed  Google Scholar 

  15. Shen C, Lancaster CS, Shi B, Guo H, Thimmaiah P, Bjornsti MA . TOR signaling is a determinant of cell survival in response to DNA damage. Mol Cell Biol 2007; 27: 7007–7017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu P, Cheng H, Roberts TM, Zhao JJ . Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8: 627–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meric-Bernstam F, Gonzalez-Angulo AM . Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 2009; 27: 2278–2287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P . Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 2008; 8: 393–412.

    Article  CAS  PubMed  Google Scholar 

  19. Gangloff YG, Mueller M, Dann SG, Svoboda P, Sticker M, Spetz JF et al. Disruption of the mouse mTOR gene leads to early postimplantation lethality and prohibits embryonic stem cell development. Mol Cell Biol 2004; 24: 9508–9516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D . Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 1995; 376: 167–170.

    Article  CAS  PubMed  Google Scholar 

  21. Hu Y, Baud V, Delhase M, Zhang P, Deerinck T, Ellisman M et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 1999; 284: 316–320.

    Article  CAS  PubMed  Google Scholar 

  22. Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, Boulware D et al. Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res 2009; 69: 9367–9375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA . H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114: 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fairbairn DW, Olive PL, O'Neill KL . The comet assay: a comprehensive review. Mutat Res 1995; 339: 37–59.

    Article  CAS  PubMed  Google Scholar 

  25. Olive PL, Banáth JP, Durand RE . Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res 1990; 122: 86–94.

    Article  CAS  PubMed  Google Scholar 

  26. Niedernhofer LJ, Lalai AS, Hoeijmakers JH . Fanconi anemia (cross) linked to DNA repair. Cell 2005; 123: 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  27. Venkitaraman AR . Tracing the network connecting BRCA and Fanconi anaemia proteins. Nat Rev Cancer 2004; 4: 266–276.

    Article  CAS  PubMed  Google Scholar 

  28. Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS . Akt-dependent regulation of NF-κB is controlled by mTOR and Raptor in association with IKK. Genes Dev 2008; 22: 1490–1500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Markus Grompe (Oregon Health & Sciences University) for FANCD2+/− mice, Dr Alan D'Andrea (Harvard Medical School) for the pMMP-Puro and pMMP-FANCD2 retroviral vectors. This work was supported by NIH grants R01 HL076712 and T32 HL091805.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F Guo or Y Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Li, J., Du, W. et al. mTOR regulates DNA damage response through NF-κB-mediated FANCD2 pathway in hematopoietic cells. Leukemia 27, 2040–2046 (2013). https://doi.org/10.1038/leu.2013.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.93

Keywords

This article is cited by

Search

Quick links