Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells

Abstract

HERV-K (human endogenous retrovirus type K) type 1-encoded Np9 is a tumor-specific biomarker, but its oncogenic role and targets in human leukemia remain elusive. We first identified Np9 as a potent viral oncogene in human leukemia. Silencing of Np9 inhibited the growth of myeloid and lymphoblastic leukemic cells, whereas expression of Np9 significantly promoted the growth of leukemia cells in vitro and in vivo. Np9 not only activated ERK, AKT and Notch1 pathways but also upregulated β-catenin essential for survival of leukemia stem cells. In human leukemia, Np9 protein level in leukemia patients was substantially higher than that in normal donors (56% vs 4.5%). Moreover, Np9 protein level was correlated with the number of leukemia stem/progenitor cells but not detected in normal CD34+ hematopoietic stem cells. In addition, Np9-positive samples highly expressed leukemia-specific pol-env polyprotein, env and transmembrane proteins as well as viral particles. Thus, the viral oncogene Np9 is a critical molecular switch of multiple signaling pathways regulating the growth of leukemia stem/progenitor cells. These findings open a new perspective to understand the etiology of human common leukemia and provide a novel target for treating leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC . Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 1980; 77: 7415–7419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuli Y, Shiraishi Y et al. Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 1981; 294: 770–771.

    Article  CAS  PubMed  Google Scholar 

  3. Lander ES, Linton LM, Birren B, Nubaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  4. Costas J . Characterization of the intragenomic spread of the human endogenous retrovirus family HERV-W. Mol Biol Evol 2002; 19: 526–533.

    Article  CAS  PubMed  Google Scholar 

  5. Hughes JF, Coffin JM . Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 2001; 29: 487–489.

    Article  CAS  PubMed  Google Scholar 

  6. Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G et al. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 2006; 16: 1548–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tönjes RR, Löwer R, Boller K, Denner J, Hasenmaier B, Kirsch H et al. HERV-K: the biologically most active human endogenous retrovirus family. Acquir Immune Defic Syndr Hum Retrovirol 1996; 13: S261–S267.

    Article  Google Scholar 

  8. Kraus B, Boller K, Reuter A, Schnierle BS . Characterization of the human endogenous retrovirus K Gag protein: identification of protease cleavage sites. Retrovirology 2011; 8: 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barbulescu M, Turner G, Seaman MI, Deinard AS, Kidd KK, Lenz J . Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Curr Biol 1999; 9: 861–868.

    Article  CAS  PubMed  Google Scholar 

  10. Hanke K, Kramer P, Seeher S, Beimforde N, Kurth R, Bannert N . Reconstitution of the ancestral glycoprotein of human endogenous retrovirus k and modulation of its functional activity by truncation of the cytoplasmic domain. J Virol 2009; 83: 12790–12800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boller K, Schönfeld K, Lischer S, Fischer N, Hofmann A, Kurth R et al. Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J Gen Virol 2008; 89: 567–572.

    Article  CAS  PubMed  Google Scholar 

  12. Lee YN, Bieniasz PD . Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 2007; 3: e10.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Contreras-Galindo R, Almodóvar-Camacho S, González-Ramírez S, Lorenzo E, Yamamura Y . Comparative longitudinal studies of HERV-K and HIV-1 RNA titers in HIV-1-infected patients receiving successful versus unsuccessful highly active antiretroviral therapy. AIDS Res Hum Retroviruses 2007; 23: 1083–1086.

    Article  CAS  PubMed  Google Scholar 

  14. Depil S, Roche C, Dussart P, Prin L . Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 2002; 16: 254–259.

    Article  CAS  PubMed  Google Scholar 

  15. Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I, Bagnoli F et al. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J Virol 2008; 82: 9329–9336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B, Frerich K et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J Natl Cancer Inst 2012; 104: 189–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Armbruester V, Sauter M, Krautkraemer E, Meese E, Kleiman A, Best B et al. A novel gene from the human endogenous retrovirus K expressed in transformed cells. Clin Cancer Res 2002; 8: 1800–1807.

    CAS  PubMed  Google Scholar 

  18. Büscher K, Trefzer U, Hofmann M, Sterry W, Kurth R, Denner J . Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res 2005; 65: 4172–4180.

    Article  PubMed  Google Scholar 

  19. Xu R, Gao Q, Wang S, Kan H, Sheng L, Li C et al. Human acute myeloid leukemias may be etiologically associated with new human retroviral infection. Leuk Res 1996; 20: 449–455.

    Article  CAS  PubMed  Google Scholar 

  20. Oteiza A, Mechti N . The human T-cell leukemia virus type 1 oncoprotein tax controls forkhead box O4 activity through degradation by the proteasome. J Virol 2011; 85: 6480–6491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boese A, Sauter M, Galli U, Best B, Herbst H, Mayer J et al. Human endogenous retrovirus protein cORF supports cell transformation and associates with the promyelocytic leukemia zinc finger protein. Oncogene 2000; 19: 4328–4336.

    Article  CAS  PubMed  Google Scholar 

  22. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318: 287–290.

    Article  CAS  PubMed  Google Scholar 

  23. Gandillet A, Park S, Lassailly F, Griessinger E, Vargaftig J, Filby A et al. Heterogeneous sensitivity of human acute myeloid leukemia to β-catenin down-modulation. Leukemia 2011; 25: 770–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D et al. β-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606–618.

    Article  CAS  PubMed  Google Scholar 

  25. Tatarek J, Cullion K, Ashworth T, Gerstein R, Aster JC, Kelliher MA . Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. Blood 2011; 118: 1579–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito T, Kwon HY, Zimdahl B, Congdon KL, Blum J, Lento WE et al. Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature 2010; 466: 765–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Liu Y, Li Z, Du J, Ryu MJ, Taylor PR et al. Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 2010; 116: 5991–6002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Bäsecke J et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia 2011; 25: 1080–1094.

    Article  CAS  PubMed  Google Scholar 

  29. Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F et al. Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med 2011; 208: 1595–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Polak R, Buitenhuis M . The PI3K/PKB signaling module as key regulator of hematopoiesis: implications for therapeutic strategies in leukemia. Blood 2011; 199: 911–923.

    Google Scholar 

  31. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 2011; 146: 697–708.

    Article  CAS  PubMed  Google Scholar 

  32. Hu Y, Chen Y, Douglas L, Li S . Beta-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 2009; 23: 109–116.

    Article  CAS  PubMed  Google Scholar 

  33. Armbruester V, Sauter M, Roemer K, Best B, Hahn S, Nty A et al. Np9 protein of human endogenous retrovirus K interacts with ligand of numb protein X. J Virol 2004; 78: 10310–10319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nie J, McGill MA, Dermer M, Dho SE, Wolting CD, McGlade CJ . LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. EMBO J 2002; 21: 93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denne M, Sauter M, Armbruester V, Licht JD, Roemer K, Mueller-Lantzsch N . Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein. J Virol 2007; 81: 5607–5616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the National Natural Science Foundation of China (30672381, 30873095, 81070420 and 81270601), Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents and the Grants of the Natural Science Foundation of Zhejiang Province (Y206238, Y2080570 and Y2080210).

Author Contributions

TC, ZPM, YCG, XQW, FX, YG, XHX, JFT, HZ, XZZ, XXG, CVN, GBX, LSH, XHZ, YMF, JCW performed experiments; WDH and RZX designed the study and interpreted the results and wrote the paper; SZ, and JJ provided conceptual advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Huang or R Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Meng, Z., Gan, Y. et al. The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia 27, 1469–1478 (2013). https://doi.org/10.1038/leu.2013.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.8

Keywords

This article is cited by

Search

Quick links