Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation

Abstract

Children with acute lymphoblastic leukemia (ALL) and high minimal residual disease (MRD) levels after initial chemotherapy have a poor clinical outcome. In this prospective, single arm, Phase 2 trial, 111 Dutch and Australian children aged 1–18 years with newly diagnosed, t(9;22)-negative ALL, were identified among 1041 consecutively enrolled patients as high risk (HR) based on clinical features or high MRD. The HR cohort received the AIEOP-BFM (Associazione Italiana di Ematologia ed Oncologia Pediatrica (Italy)–Berlin-Frankfurt-Münster ALL Study Group) 2000 ALL Protocol I, then three novel HR chemotherapy blocks, followed by allogeneic transplant or chemotherapy. Of the 111 HR patients, 91 began HR treatment blocks, while 79 completed the protocol. There were 3 remission failures, 12 relapses, 7 toxic deaths in remission and 10 patients who changed protocol due to toxicity or clinician/parent preference. For the 111 HR patients, 5-year event-free survival (EFS) was 66.8% (±5.5) and overall survival (OS) was 75.6% (±4.3). The 30 patients treated as HR solely on the basis of high MRD levels had a 5-year EFS of 63% (±9.4%). All patients experienced grade 3 or 4 toxicities during HR block therapy. Although cure rates were improved compared with previous studies, high treatment toxicity suggested that novel agents are needed to achieve further improvement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Schrappe M, Nachman J, Hunger S, Schmiegelow K, Conter V, Masera G et al. Educational symposium on long-term results of large prospective clinical trials for childhood acute lymphoblastic leukemia (1985-2000). Leukemia 2010; 24 (2): 253–254.

    Article  CAS  PubMed  Google Scholar 

  2. Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009; 360: 2730–2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Dongen JJM, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  4. Marshall GM, Haber M, Kwan E, Zhu L, Ferrara D, Xue C et al. Importance of minimal residual disease testing during the second year of therapy for children with acute lymphoblastic leukaemia. J Clin Oncol 2003; 21 (4): 704–709.

    Article  PubMed  Google Scholar 

  5. Möricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dördelmann M et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood 2008; 111 (9): 4477–4489.

    Article  PubMed  Google Scholar 

  6. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grümayer R, Möricke A et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010; 115: 3206–3214.

    Article  CAS  PubMed  Google Scholar 

  7. Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grümayer R, Möricke A et al. Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AEIOP-BFM-ALL 2000 Study. Blood 2011; 118 (8): 2077–2084.

    Article  CAS  PubMed  Google Scholar 

  8. Tallen G, Ratei R, Mann G, Kaspers G, Niggli F, Karachunsky A et al. Long-term outcome in children with relapsed acute lymphoblastic leukemia after time-point and site-of-relapse stratification and intensified short-course multidrug chemotherapy: results of Trial ALL-REZ BFM 90. J Clin Oncol 2010; 28 (14): 2339–2347.

    Article  CAS  PubMed  Google Scholar 

  9. Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010; 376: 2009–2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coustan-Smith E, Sancho J, Behm FG, Hancock ML, Razzouk BI, Ribeiro RC et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002; 100: 52–58.

    Article  CAS  PubMed  Google Scholar 

  11. Basso G, Veltroni M, Valsecchi MG, Dworzak MN, Ratei R, Silvestri D et al. Risk of relapse of childhood acute lymphoblastic leukaemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009; 27 (31): 5168–5174.

    Article  PubMed  Google Scholar 

  12. Borowitz MJ, Devidas M, Hunger SP, Bowman WP, Carroll AJ, Carroll WL et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children’s Oncology Group study. Blood 2008; 111 (12): 5477–5485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choi S, Henderson MJ, Kwan E, Beesley AH, Sutton R, Bahar AY et al. Relapse in children with acute lymphoblastic leukaemia involving selection of a pre-existing drug resistant sub-clone. Blood 2007; 110 (2): 632–639.

    Article  CAS  PubMed  Google Scholar 

  14. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M et al. Improved early EFS with imatinib in philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol 2009; 27: 5175–5181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ribera J-M, Ortega J-J, Oriol A, Bastida P, Calvo C, Pérez-Hurtado JM et al. Comparison of intensive chemotherapy, allogeneic, or autologous stem-cell transplantation as postremission treatment for children with very high risk acute lymphoblastic leukemia: PETHEMA ALL-93 Trial. J Clin Oncol 2007; 25 (1): 16–24.

    Article  CAS  PubMed  Google Scholar 

  16. Schrauder A, Reiter A, Gadner H, Niethammer D, Klingebiel T, Kremens B et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol 2006; 24 (36): 5742–5749.

    Article  PubMed  Google Scholar 

  17. Aricó M, Schrappe M, Hunger SP, Carroll WL, Conter V, Galimberti S et al. Clinical outcome of children with newly diagnosed philadelphia chromosome–positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol 2010; 28 (31): 4755–4761.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brown RA, Herzig RH, Wolff SN, Frei-Lahr D, Pineiro L, Bolwell BJ et al. High-dose etoposide and cyclophosphamide without bone marrow transplantation for resistant hematologic malignancy. Blood 1990; 76 (3): 473–479.

    CAS  PubMed  Google Scholar 

  19. Morland BJ, Shaw PJ. . Induction toxicity of a modified Memorial Sloan-Kettering New York II protocol in children with relapsed adult lymphoblastic leukemia: a single institution study. Med Ped Oncol 1996; 27: 139–144.

    Article  CAS  Google Scholar 

  20. Feldman EJ, Albert DS, Arlin Z, Ahmed T, Mittelman A, Baskind P et al. Phase I clinical and pharmacokinetic evaluation of high-dose mitoxantrone in combination with cytarabine in patients with acute leukemia. J Clin Oncol 1993; 11 (10): 2002–2009.

    Article  CAS  PubMed  Google Scholar 

  21. Arlin ZA, Feldman EJ, Finger LR, Ahmed T, Mittelman A, Cook P et al. Short course high-dose mitoxantrone with high-dose cytarabine is effective therapy for adult lymphoblastic leukemia. Leukemia 1991; 5 (8): 712–714.

    CAS  PubMed  Google Scholar 

  22. Visani G, Tosi P, Zinzani PL, Manfroi S, Ottaviani E, Cenacchi A et al. FLAG (fludarabine, cytarabine, G-CSF) as second line therapy for acute lymphoblastic leukemia with myeloid antigen expression: in vitro and in vivo effects. Eur J Haem 1996; 56 (5): 308–312.

    Article  CAS  Google Scholar 

  23. McCarthy AJ, Pitcher LA, Hann IM, Oakhill A. . FLAG (fludarabine, high-dose cytarabine and G-CSF) for refractory and relapsed high risk acute leukemia in children. Med Ped Oncol 1999; 34 (2): 411–415.

    Article  Google Scholar 

  24. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 771–782.

    Article  CAS  PubMed  Google Scholar 

  25. Sutton R, Bahar AY, Kwan E, Giles JE, Venn NC, Tran S et al. Improving minimal residual disease detection in precursor-B-All based on immunoglobulin kappa and heavy chain gene rearrangements. Leukemia 2008; 22: 2265–2267.

    Article  CAS  PubMed  Google Scholar 

  26. Sutton R, Venn NC, Tolisano J, Bahar AY, Giles JE, Ashton LJ et al. Clinical significance of minimal residual disease at day 15 and at the end of therapy in childhood acute lymphoblastic leukaemia. Brit J Haem 2009; 146: 292–299.

    Article  CAS  Google Scholar 

  27. van der Velden VHJ, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  PubMed  Google Scholar 

  28. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13 (3): 176–181.

    Article  PubMed  Google Scholar 

  29. Nachman J, Sather HN, Cherlow JM, Sensel MG, Gaynon PS, Lukens JN et al. Response of children with high-risk acute lymphoblastic leukemia treated with and without cranial irradiation: a report from the Children’s Cancer Group. J Clin Oncol 1998; 16: 920–930.

    Article  CAS  PubMed  Google Scholar 

  30. Aricò M, Valsecchi MG, Conter V, Rizzari C, Pession A, Messina C et al. Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone-poor response treated with double Berlin-Frankfurt-Muenster protocol II. Blood 2002; 100: 420–426.

    Article  PubMed  Google Scholar 

  31. Moghrabi A, Levy DE, Asselin B, Barr R, Clavell L, Hurwitz C et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood 2007; 109: 896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seibel NL, Steinherz PG, Sather HN, Nachman JB, Delaat C, Ettinger LJ et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood 2008; 111: 2548–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bordigoni P, Vernant JP, Souillet G, Gluckman E, Marininchi D, Milpied N et al. Allogeneic bone marrow transplantation for children with acute lymphoblastic leukemia in first remission: a cooperative study of the Groupe d'Etude de la Greffe de Moelle Osseuse. J Clin Oncol 1989; 7: 747–753.

    Article  CAS  PubMed  Google Scholar 

  34. Balduzzi A, Valsecchi MG, Uderzo C, De Lorenzo P, Klingebiel T, Peters C et al. Chemotherapy versus allogeneic transplantation for very high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomisation in an international prospective study. Lancet 2005; 366: 635–642.

    Article  PubMed  Google Scholar 

  35. Satwani P, Sather H, Ozkaynak F, Heerema NA, Schultz KR, Sanders J et al. Allogeneic bone marrow transplantation in first remission for children with ultra-high-risk features of acute lymphoblastic leukemia: a Children’s Oncology Group study report. Biol Blood Marrow Transplant 2007; 13: 218–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof Martin Schrappe and the I-BFM for their support. This work was supported by the National Health and Medical Research Council of Australia, Cancer Council New South Wales, Steven Walter Children’s Cancer Foundation, Cancer Institute New South Wales and Leukemia Foundation.

Author contributions

Conception and design: LDP, GMM, MDN and RP. Administrative support: RS, AN, HG, SC, HM and VH. Provision of study materials or patients: LDP, RS, NCV, VHV, HB, ESJMB, RME, PMH, GJLK, ES, JD, TL, MDN, MH, TR, A, RS, RP and GMM. Collection and assembly of data: GMM, LDP, RS, AN, HG-K , NCV, VHV, HM, VH, MDN, MH, TR, FA and RP. Data analysis and interpretation: GMM, LDP, RS, AN, HG-K, NCV, VHV, SC, HM, VH, MDN, MH, TR, FA, RS and RP. Manuscript writing: GMM, LDP, RS, AN and RP. Final approval of manuscript: All the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G M Marshall.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, G., Dalla Pozza, L., Sutton, R. et al. High-risk childhood acute lymphoblastic leukemia in first remission treated with novel intensive chemotherapy and allogeneic transplantation. Leukemia 27, 1497–1503 (2013). https://doi.org/10.1038/leu.2013.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.44

Keywords

This article is cited by

Search

Quick links