Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Pontin is a critical regulator for AML1-ETO-induced leukemia

Abstract

The oncogenic fusion protein AML1-ETO, also known as RUNX1-RUNX1T1 is generated by the t(8;21)(q22;q22) translocation, one of the most frequent chromosomal rearrangements in acute myeloid leukemia (AML). Identifying the genes that cooperate with or are required for the oncogenic activity of this chimeric transcription factor remains a major challenge. Our previous studies showed that Drosophila provides a genuine model to study how AML1-ETO promotes leukemia. Here, using an in vivo RNA interference screen for suppressors of AML1-ETO activity, we identified pontin/RUVBL1 as a gene required for AML1-ETO-induced lethality and blood cell proliferation in Drosophila. We further show that PONTIN inhibition strongly impaired the growth of human t(8;21)+ or AML1-ETO-expressing leukemic blood cells. Interestingly, AML1-ETO promoted the transcription of PONTIN. Moreover, transcriptome analysis in Kasumi-1 cells revealed a strong correlation between PONTIN and AML1-ETO gene signatures and demonstrated that PONTIN chiefly regulated the expression of genes implicated in cell cycle progression. Concordantly, PONTIN depletion inhibited leukemic self-renewal and caused cell cycle arrest. All together our data suggest that the upregulation of PONTIN by AML1-ETO participate in the oncogenic growth of t(8;21) cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  2. Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y et al. The t(8;21) translocation in acute myeloid leukemia results in production of an AML1-MTG8 fusion transcript. EMBO J 1993; 12: 2715–2721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lam K, Zhang DE . RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci 2012; 17: 1120–1139.

    Article  CAS  PubMed Central  Google Scholar 

  4. Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, Herglotz J et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood 2010; 116: 603–613.

    Article  CAS  PubMed  Google Scholar 

  5. Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 2012; 26: 1829–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martens JH, Mandoli A, Simmer F, Wierenga BJ, Saeed S, Singh AA et al. ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 2012; 120: 4038–4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saeed S, Logie C, Francoijs KJ, Frige G, Romanenghi M, Nielsen FG et al. Chromatin accessibility, p300, and histone acetylation define PML-RARalpha and AML1-ETO binding sites in acute myeloid leukemia. Blood 2012; 120: 3058–3068.

    Article  CAS  PubMed  Google Scholar 

  8. Hatlen MA, Wang L, Nimer SD . AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med 2011; 6: 248–262.

    Article  Google Scholar 

  9. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang YY, Zhao LJ, Wu CF, Liu P, Shi L, Liang Y et al. C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2011; 108: 2450–2455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 2012; 333: 765–769.

    Article  Google Scholar 

  13. Lo MC, Peterson LF, Yan M, Cong X, Jin F, Shia WJ et al. Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood 2012; 120: 1473–1484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Wang J, Wheat J, Chen X, Jin S, Sadrzadeh H et al. AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/beta-catenin signaling pathway. Blood 2013; 121: 4906–4916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Gao L, Luo X, Wang L, Gao X, Wang W et al. Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood 2013; 121: 499–509.

    Article  CAS  PubMed  Google Scholar 

  16. Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L . Modeling cancers in Drosophila. Prog Mol Biol Transl Sci 2011; 100: 51–82.

    Article  CAS  PubMed  Google Scholar 

  17. Crozatier M, Vincent A . Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis Model Mech 2011; 4: 439–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osman D, Gobert V, Ponthan F, Heidenreich O, Haenlin M, Waltzer L . A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proc Natl Acad Sci USA 2009; 106: 12043–12048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bras S, Martin-Lanneree S, Gobert V, Auge B, Breig O, Sanial M et al. Myeloid leukemia factor is a conserved regulator of RUNX transcription factor activity involved in hematopoiesis. Proc Natl Acad Sci USA 2012; 109: 4986–4991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grigoletto A, Lestienne P, Rosenbaum J . The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 2011; 1815: 147–157.

    CAS  PubMed  Google Scholar 

  21. Haurie V, Menard L, Nicou A, Touriol C, Metzler P, Fernandez J et al. Adenosine triphosphatase pontin is overexpressed in hepatocellular carcinoma and coregulated with reptin through a new posttranslational mechanism. Hepatology 2009; 50: 1871–1883.

    Article  CAS  PubMed  Google Scholar 

  22. Heidenreich O, Krauter J, Riehle H, Hadwiger P, John M, Heil G et al. AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. Blood 2003; 101: 3157–3163.

    Article  CAS  PubMed  Google Scholar 

  23. Martinez N, Drescher B, Riehle H, Cullmann C, Vornlocher HP, Ganser A et al. The oncogenic fusion protein RUNX1-CBFA2T1 supports proliferation and inhibits senescence in t(8;21)-positive leukaemic cells. BMC Cancer 2004; 4: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gobert V, Osman D, Bras S, Auge B, Boube M, Bourbon HM et al. A genome-wide RNA interference screen identifies a differential role of the mediator CDK8 module subunits for GATA/ RUNX-activated transcription in Drosophila. Mol Cell Biol 2010; 30: 2837–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bomken S, Buechler L, Rehe K, Ponthan F, Elder A, Blair H et al. Lentiviral marking of patient-derived acute lymphoblastic leukaemic cells allows in vivo tracking of disease progression. Leukemia 2013; 27: 718–721.

    Article  CAS  PubMed  Google Scholar 

  26. Breig O, Theoleyre O, Douablin A, Baklouti F . Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop. Oncogene 2010; 29: 2807–2816.

    Article  CAS  PubMed  Google Scholar 

  27. Schmid R, Baum P, Ittrich C, Fundel-Clemens K, Huber W, Brors B et al. Comparison of normalization methods for Illumina BeadChip HumanHT-12 v3. BMC Genomics 2010; 11: 349.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bauer A, Chauvet S, Huber O, Usseglio F, Rothbacher U, Aragnol D et al. Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 2000; 19: 6121–6130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD et al. GeneMANIA prediction server 2013 update. Nucleic Acids Res 2013; 41: W115–W122.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wildonger J, Mann RS . The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 2005; 132: 2263–2272.

    Article  CAS  PubMed  Google Scholar 

  31. Sinenko SA, Hung T, Moroz T, Tran QM, Sidhu S, Cheney MD et al. Genetic manipulation of AML1-ETO-induced expansion of hematopoietic precursors in a Drosophila model. Blood 2010; 116: 4612–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bereshchenko O, Mancini E, Luciani L, Gambardella A, Riccardi C, Nerlov C . Pontin is essential for murine hematopoietic stem cell survival. Haematologica 2012; 97: 1291–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng Y, Lee N, Fearon ER . TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling. Cancer Res 2003; 63: 8726–8734.

    CAS  PubMed  Google Scholar 

  34. Dugan KA, Wood MA, Cole MD . TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene 2002; 21: 5835–5843.

    Article  CAS  PubMed  Google Scholar 

  35. Ducat D, Kawaguchi S, Liu H, Yates JR 3rd, Zheng Y . Regulation of microtubule assembly and organization in mitosis by the AAA+ ATPase Pontin. Mol Biol Cell 2008; 19: 3097–3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watkins NJ, Lemm I, Ingelfinger D, Schneider C, Hossbach M, Urlaub H et al. Assembly and maturation of the U3 snoRNP in the nucleoplasm in a large dynamic multiprotein complex. Mol Cell 2004; 16: 789–798.

    Article  CAS  PubMed  Google Scholar 

  37. Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholouli E et al. Autocrine activation of the MET receptor tyrosine kinase in acute myeloid leukemia. Nat Med 2012; 18: 1118–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bellosta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D et al. Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during Drosophila development. Proc Natl Acad Sci USA 2005; 102: 11799–11804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wood MA, McMahon SB, Cole MD . An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 2000; 5: 321–330.

    Article  CAS  PubMed  Google Scholar 

  40. Delgado MD, Leon J . Myc roles in hematopoiesis and leukemia. Genes Cancer 2010; 1: 605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujiwara K, Yuwanita I, Hollern DP, Andrechek ER . Prediction and genetic demonstration of a role for activator E2Fs in Myc-induced tumors. Cancer Res 2011; 71: 1924–1932.

    Article  CAS  PubMed  Google Scholar 

  42. Li FX, Zhu JW, Tessem JS, Beilke J, Varella-Garcia M, Jensen J et al. The development of diabetes in E2f1/E2f2 mutant mice reveals important roles for bone marrow-derived cells in preventing islet cell loss. Proc Natl Acad Sci USA 2003; 100: 12935–12940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Stefano L, Jensen MR, Helin K . E2F7 a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 2003; 22: 6289–6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salvatori B, Iosue I, Mangiavacchi A, Loddo G, Padula F, Chiaretti S et al. The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 2012; 3: e413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE . Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 2008; 132: 945–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gessner A, Thomas M, Castro PG, Buchler L, Scholz A, Brummendorf TH et al. Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT. Leukemia 2010; 24: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  47. Osaki H, Walf-Vorderwulbecke V, Mangolini M, Zhao L, Horton SJ, Morrone G et al. The AAA(+) ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 2013; 27: 1461–1468.

    Article  CAS  PubMed  Google Scholar 

  48. Huang X, Spencer GJ, Lynch JT, Ciceri F, Somerville TDD, Somervaille TCP . Enhancers of Polycomb EPC1 and EPC2 sustain the oncogenic potential of MLL leukemia stem cells. Leukemia 2013; e-pub ahead of print 12 November 2013 doi:10.1038/leu.2013.316.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Menard L, Taras D, Grigoletto A, Haurie V, Nicou A, Dugot-Senant N et al. In vivo silencing of Reptin blocks the progression of human hepatocellular carcinoma in xenografts and is associated with replicative senescence. J Hepatol 2010; 52: 681–689.

    Article  CAS  PubMed  Google Scholar 

  50. Elkaim J, Castroviejo M, Bennani D, Taouji S, Allain N, Laguerre M et al. First identification of small-molecule inhibitors of Pontin by combining virtual screening and enzymatic assay. Biochem J 2012; 443: 549–559.

    Article  CAS  PubMed  Google Scholar 

  51. Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG et al. Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Cell 2002; 111: 661–672.

    Article  CAS  PubMed  Google Scholar 

  52. Li W, Zeng J, Li Q, Zhao L, Liu T, Bjorkholm M et al. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol Cancer 2010; 9: 132.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gonzalez C . Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13: 172–183.

    Article  CAS  PubMed  Google Scholar 

  54. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers MD et al. An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model. Blood 2012; 119: 4512–4523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to members of our teams for comments on the manuscript. We thank Toulouse RIO imaging platform and T Jungas for assistance with FACS analysis as well as L Liaubet and S Bel-Vialar for their help with microarray analysis. We deeply thank B Augé for technical help. We thank the National Institute of Genetics (Japan), the Vienna Drosophila Resource Center (Austria) and Bloomington (USA) for fly stocks. This work was supported by grants from the Ligue Régionale Midi Pyrénées, Fondation ARC and Association for International Cancer Research to LW and OB; SB was supported by a fellowship from the Fondation pour la Recherche Médicale, and OH and NMS by a research grant from Leukaemia and Lymphoma Research (10033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Haenlin or L Waltzer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breig, O., Bras, S., Martinez Soria, N. et al. Pontin is a critical regulator for AML1-ETO-induced leukemia. Leukemia 28, 1271–1279 (2014). https://doi.org/10.1038/leu.2013.376

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.376

Keywords

This article is cited by

Search

Quick links