Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton

Abstract

Chronic lymphocytic leukemia (CLL) is an incurable malignancy of mature B cells. One of the major challenges in treatment of CLL is the achievement of a complete remission to prevent relapse of disease originating from cells within lymphoid tissues and subsequent chemoresistance. In search for novel drugs that target CLL cells in protective microenvironments, we performed a fungal extract screen using cocultures of primary CLL cells with bone marrow-derived stromal cells. A secondary metabolite produced by Penicillium aquamarinium was identified as Chaetoglobosin A (ChA), a member of the cytochalasan family that showed preferential induction of apoptosis in CLL cells, even under culture conditions that mimic lymphoid tissues. In vitro testing of 89 CLL cases revealed effective targeting of CLL cells by ChA, independent of bad prognosis characteristics, like 17p deletion or TP53 mutation. To provide insight into its mechanism of action, we showed that ChA targets filamentous actin in CLL cells and thereby induces cell-cycle arrest and inhibits membrane ruffling and cell migration. Our data further revealed that ChA prevents CLL cell activation and sensitizes them for treatment with PI3K and BTK inhibitors, suggesting this compound as a novel potential drug for CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10: 37–50.

    Article  CAS  PubMed  Google Scholar 

  2. Badoux X, Keating M, Wierda W . What is the best frontline therapy for patients with CLL and 17p deletion? Curr Hematol Malig Rep 2011; 6: 36–46.

    Article  PubMed  Google Scholar 

  3. Stilgenbauer SLB, Lichter P, Döhner H, the German CLL Study Group (GCLLSG). Genetics of chronic lymphocytic leukemia: genomic aberrations and VH gene mutation status in pathogenesis and clinical course. Leukemia 2002; 16: 993–1007.

    Article  CAS  PubMed  Google Scholar 

  4. Wiestner A . Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 2012; 120: 4684–4691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Caligaris-Cappio F, Ghia P . Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 2008; 26: 4497–4503.

    Article  CAS  PubMed  Google Scholar 

  7. Pleyer L, Egle A, Hartmann TN, Greil R . Molecular and cellular mechanisms of CLL: novel therapeutic approaches. Nat Rev Clin Oncol 2009; 6: 405–418.

    Article  CAS  PubMed  Google Scholar 

  8. Korz C, Pscherer A, Benner A, Mertens D, Schaffner C, Leupolt E et al. Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative expression analysis of cell cycle and apoptosis-associated genes. Blood 2002; 99: 4554–4561.

    Article  CAS  PubMed  Google Scholar 

  9. Minden MD-v Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 2012; 489: 309–312.

    Article  Google Scholar 

  10. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  PubMed  Google Scholar 

  11. Lagneaux L, Delforge A, Bron D, De Bruyn C, Stryckmans P . Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 1998; 91: 2387–2396.

    CAS  PubMed  Google Scholar 

  12. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1996; 92: 97–103.

    Article  CAS  PubMed  Google Scholar 

  13. Pedersen IM, Kitada S, Leoni LM, Zapata JM, Karras JG, Tsukada N et al. Protection of CLL B cells by a follicular dendritic cell line is dependent on induction of Mcl-1. Blood 2002; 100: 1795–1801.

    Article  CAS  PubMed  Google Scholar 

  14. Seiffert M, Schulz A, Ohl S, Döhner H, Stilgenbauer S, Lichter P . Soluble CD14 is a novel monocyte-derived survival factor for chronic lymphocytic leukemia cells, which is induced by CLL cells in vitro and present at abnormally high levels in vivo. Blood 2010; 116: 4223–4230.

    Article  CAS  PubMed  Google Scholar 

  15. Gamberale R, Geffner J, Arrosagaray G, Scolnik M, Salamone G, Trevani A et al. Non-malignant leukocytes delay spontaneous B-CLL cell apoptosis. Leukemia 2001; 15: 1860–1867.

    Article  CAS  PubMed  Google Scholar 

  16. Hartmann TN, Grabovsky V, Wang W, Desch P, Rubenzer G, Wollner S et al. Circulating B-cell chronic lymphocytic leukemia cells display impaired migration to lymph nodes and bone marrow. Cancer Res 2009; 69: 3121–3130.

    Article  CAS  PubMed  Google Scholar 

  17. Burger M, Hartmann T, Krome M, Rawluk J, Tamamura H, Fujii N et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood 2005; 106: 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  18. Kaucká M, Plevová K, Pavlová Š, Janovská P, Mishra A, Verner J et al. The planar cell polarity pathway drives pathogenesis of chronic lymphocytic leukemia by the regulation of b-lymphocyte migration. Cancer Res 2013; 73: 1491–1501.

    Article  PubMed  Google Scholar 

  19. Troeger A, Johnson AJ, Wood J, Blum WG, Andritsos LA, Byrd JC et al. RhoH is critical for cell-microenvironment interactions in chronic lymphocytic leukemia in mice and humans. Blood 2012; 119: 4708–4718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burger JA, Peled A . CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia 2008; 23: 43–52.

    Article  PubMed  Google Scholar 

  21. Schulz A, Dürr C, Zenz T, Döhner H, Stilgenbauer S, Lichter P et al. Lenalidomide reduces survival of chronic lymphocytic leukemia cells in primary cocultures by altering the myeloid microenvironment. Blood 2013; 121: 2503–2511.

    Article  CAS  PubMed  Google Scholar 

  22. Seiffert M, Stilgenbauer S, Döhner H, Lichter P . Efficient nucleofection of primary human B cells and B-CLL cells induces apoptosis, which depends on the microenvironment and on the structure of transfected nucleic acids. Leukemia 2007; 21: 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  23. Rebacz B, Larsen TO, Clausen MH, Ronnest MH, Loffler H, Ho AD et al. Identification of Griseofulvin as an Inhibitor of Centrosomal Clustering in a Phenotype-Based Screen. Cancer Res 2007; 67: 6342–6350.

    Article  CAS  PubMed  Google Scholar 

  24. Rønnest MH, Rebacz B, Markworth L, Terp AH, Larsen TO, Krämer A et al. Synthesis and Structure−Activity Relationship of Griseofulvin Analogues as Inhibitors of Centrosomal Clustering in Cancer Cells. J Med Chem 2009; 52: 3342–3347.

    Article  PubMed  Google Scholar 

  25. Schulz A, Toedt G, Zenz T, Stilgenbauer S, Lichter P, Seiffert M . Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica 2011; 96: 408–416.

    Article  CAS  PubMed  Google Scholar 

  26. Burger JA, Burger M, Kipps TJ . Chronic lymphocytic leukemia b cells express functional cxcr4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 1999; 94: 3658–3667.

    CAS  PubMed  Google Scholar 

  27. Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC . Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 2005; 22: 672–695.

    Article  CAS  PubMed  Google Scholar 

  28. Bladt TT, Dürr C, Knudsen PB, Kildgaard S, Frisvad JC, Gotfredsen CH et al. Bio-activity and dereplication based discovery of ophiobolins and other fungal secondary metabolites targeting leukemia cells. Molecules 2013; 18: 14629–14650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laatsch H . Antibase 2007: The natural compound identifer. Wieley VCH, 2007; Available at http://www.wiley-vch.de/stmdata/antibase.php.

    Google Scholar 

  30. Sekita S, Yoshihira K, Natori S, Udagawa S, Sakabe F, Kurata H et al. Chaetoglobosins, cytotoxic 10-(indol-3-yl)-[13] cytochalasans from chaetomium spp. I. Production, isolation and some cytological effects of chaetoglobosins A-J. Chem Pharm Bull 1982; 30: 1609–1617.

    Article  CAS  Google Scholar 

  31. Ghamlouch H, Ouled-Haddou H, Damaj G, Royer B, Gubler B, Marolleau J-P . A Combination of cytokines rescues highly purified leukemic cll b-cells from spontaneous apoptosis. PLoS One 2013; 8: e60370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yahara I, Harada F, Sekita S, Yoshihira K, Natori S . Correlation between effects of 24 different cytochalasins on cellular structures and cellular events and those on actin in vitro. J Cell Biol 1982; 92: 69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2010; 117: 563–574.

    Article  PubMed  Google Scholar 

  34. Stilgenbauer S, Sander S, Bullinger L, Benner A, Leupolt E, Winkler D et al. Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica 2007; 92: 1242–1245.

    Article  PubMed  Google Scholar 

  35. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 2012; 120: 4191–4196.

    Article  CAS  PubMed  Google Scholar 

  36. Landau D, Carter S, Stojanov P, McKenna A, Stevenson K, Lawrence M et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Scherlach K, Boettger D, Remme N, Hertweck C . The chemistry and biology of cytochalasans. Nat Prod Rep 2010; 27: 869–886.

    Article  CAS  PubMed  Google Scholar 

  38. Maruyama K, Oosawa M, Tashiro A, Suzuki T, Tanikawa M, Kikuchi M et al. Effects of chaetoglobosin J on the G-F transformation of actin. Biochim Biophys Acta (BBA) 1986; 874: 137–143.

    Article  CAS  Google Scholar 

  39. Pawlak G, Helfman DM . Cytoskeletal changes in cell transformation and tumorigenesis. Opin Genet Dev 2001; 11: 41–47.

    Article  CAS  Google Scholar 

  40. Maruta H, He H, Tikoo A, Nur-E-Kamal MSA . Cytoskeletal Tumor suppressors that block oncogenic RAS signaling. Ann N Y Acad Sci 1999; 886: 48–57.

    Article  CAS  PubMed  Google Scholar 

  41. Udagawa T, Yuan J, Panigrahy D, Chang Y-H, Shah J, D'Amato RJ et al. an epoxide containing Aspergillus-derived fungal metabolite, inhibits angiogenesis and tumor growth. J Pharmacol Exp Ther 2000; 294: 421–427.

    CAS  PubMed  Google Scholar 

  42. Gan Y, Au JS, Lu J, Wientjes MG . Antiproliferative and cytotoxic effects of geldanamycin, cytochalasin e, suramin and thiacetazone in human prostate xenograft tumor histocultures. Pharm Res 1998; 15: 1760–1766.

    Article  CAS  PubMed  Google Scholar 

  43. Van Goietsenoven G, Mathieu V, Andolfi A, Cimmino A, Lefranc F, Kiss R et al. In Vitro growth inhibitory effects of cytochalasins and derivatives in cancer cells. Planta Med 2011; 77: 711–717.

    Article  CAS  PubMed  Google Scholar 

  44. Bousquet PF, Paulsen LA, Fondy C, Lipski KM, Loucy KJ, Fondy TP . Effects of cytochalasin b in culture and in vivo on murine madison 109 lung carcinoma and on b16 melanoma. Cancer Res 1990; 50: 1431–1439.

    CAS  PubMed  Google Scholar 

  45. Alvi KA, Nair B, Pu H, Ursino R, Gallo C, Mocek U . Phomacins: three novel antitumor cytochalasan constituents produced by a phoma sp. J Org Chem 1997; 62: 2148–2151.

    Article  CAS  PubMed  Google Scholar 

  46. Stehn JR, Schevzov G, O'Neill GM, Gunning PW . Specialisation of the tropomyosin composition of actin filaments provides new potential targets for chemotherapy. Curr Cancer Drug Targets 2006; 6: 245–256.

    Article  CAS  PubMed  Google Scholar 

  47. Huang F-y, Mei W-l, Li Y-n Tan G-h, Dai H-f, Guo J-l et al. The antitumour activities induced by pegylated liposomal cytochalasin D in murine models. Eur J Cancer 2012; 48: 2260–2269.

    Article  Google Scholar 

  48. Nowakowski GS, Hoyer JD, Shanafelt TD, Zent CS, Call TG, Bone ND et al. Percentage of Smudge Cells on Routine Blood Smear Predicts Survival in Chronic Lymphocytic Leukemia. J Clin Oncol 2009; 27: 1844–1849.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Johansson P, Eisele L, Klein-Hitpass L, Sellmann L, Dührsen U, Dürig J et al. Percentage of smudge cells determined on routine blood smears is a novel prognostic factor in chronic lymphocytic leukemia. Leuk Res 2010; 34: 892–898.

    Article  CAS  PubMed  Google Scholar 

  50. Ivaska J, Pallari H-M, Nevo J, Eriksson JE . Novel functions of vimentin in cell adhesion, migration and signaling. Exp Cell Res 2007; 313: 2050–2062.

    Article  CAS  PubMed  Google Scholar 

  51. Stark R, Liebes L, Nevrla D, Conklyn M, Silber R . Decreased actin content of lymphocytes from patients with chronic lymphocytic leukemia. Blood 1982; 59: 536–541.

    CAS  PubMed  Google Scholar 

  52. Scielzo C, Hacken ET, Bertilaccio MTS, Muzio M, Calissano C, Ghia P et al. How the microenvironment shapes chronic lymphocytic leukemia: the cytoskeleton connection. Leuk Lymphoma 2010; 51: 1371–1374.

    Article  PubMed  Google Scholar 

  53. ten Hacken E, Scielzo C, Bertilaccio MTS, Scarfò L, Apollonio B, Barbaglio F et al. Targeting the LYN/HS1 signaling axis in chronic lymphocytic leukemia. Blood 2013; 121: 2264–2273.

    Article  CAS  PubMed  Google Scholar 

  54. Scielzo C, Bertilaccio MTS, Simonetti G, Dagklis A, ten Hacken E, Fazi C et al. HS1 has a central role in the trafficking and homing of leukemic B cells. Blood 2010; 116: 3537–3546.

    Article  CAS  PubMed  Google Scholar 

  55. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O et al. The membrane skeleton controls diffusion dynamics and signaling through the B-cell receptor. Immunity 2010; 32: 187–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hoellenriegel J, Coffey GP, Sinha U, Pandey A, Sivina M, Ferrajoli A et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia 2012; 26: 1576–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. de Rooij MFM, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor– and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119: 2590–2594.

    Article  CAS  PubMed  Google Scholar 

  58. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohtsubo K SM, Sekita S, Yoshihira K, Natori S . Acute toxic effects of chaetoglobosin A, a new cytochalasan compound produced by Chaetomium globosum, on mice and rats. Jpn J Exp Med 1978; 48: 105–110.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the German José Carreras Leukemia-foundation (DJCLS R 10/04), by the Helmholtz Virtual Institute ‘Understanding and overcoming resistance to apoptosis and therapy in leukemia’ and by the research project of the German Federal Ministry of Education and Research ‘CancerEpiSys’. We acknowledge the support of the Danish Cancer Society (R20-A1157-10-S2).

Disclaimer

Hereby all authors declare, that they have approved the manuscript, they concur with the submission and that the material submitted for publication has not been previously reported and is not under consideration for publication elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T O Larsen or M Seiffert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knudsen, P., Hanna, B., Ohl, S. et al. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia 28, 1289–1298 (2014). https://doi.org/10.1038/leu.2013.360

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.360

Keywords

This article is cited by

Search

Quick links