Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity

Abstract

Bruton agammaglobulinemia tyrosine kinase (BTK), a cytoplasmic protein tyrosine kinase, is a component of the B-cell receptor signaling pathway. Ibrutinib, a BTK inhibitor, has demonstrated a significant clinical activity against chronic lymphocytic leukemia (CLL) in early clinical trials. Understanding the molecular mechanisms of action would shed light on CLL pathophysiology and provide additional opportunities for the development of new therapies. In this study, we have chosen an in vivo approach by employing an ongoing phase 1b trial of ibrutinib. We prospectively collected and analyzed serial samples from the CLL patients before and after the initiation of ibrutinib. We found that the blockage of cell proliferation was one of the primary effects of ibrutinib against leukemic CLL cells in vivo. Using a co-culture system that induces CLL proliferation in vitro, analysis of several parameters, including Ki-67 expression and bromodeoxyuridine (BrdU) incorporation, revealed that the proliferation of CLL cells was directly inhibited by ibrutinib. Furthermore, activities of BTK and phospholipase Cγ2 as well as downstream signaling molecules, AKT and ERK, were all coordinately downregulated over time in ibrutinib-treated patients. Our findings suggest that the cell proliferation is one of the essential properties of CLL. Blocking cell proliferation via inhibition of BTK-mediated signaling may contribute to clinical responses in ibrutinib-treated patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kuppers R . Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 2005; 5: 251–262.

    Article  PubMed  Google Scholar 

  2. Lenz G, Staudt LM . Aggressive lymphomas. N Engl J Med 2010; 362: 1417–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng C, Lee S, O'Connor OA . New strategies in the treatment of mantle cell lymphoma. Clin Cancer Res 2012; 18: 3499–3508.

    Article  CAS  PubMed  Google Scholar 

  4. Irish JM, Czerwinski DK, Nolan GP, Levy R . Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells. Blood 2006; 108: 3135–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ . Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 2004; 104: 2499–2504.

    Article  PubMed  Google Scholar 

  6. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  7. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dal Porto JM, Gauld SB, Merrell KT, Mills D, Pugh-Bernard AE, Cambier J . B cell antigen receptor signaling 101. Mol Immunol 2004; 41: 599–613.

    Article  CAS  PubMed  Google Scholar 

  9. Kurosaki T, Shinohara H, Baba Y . B cell signaling and fate decision. Annu Rev Immunol 2009; 28: 21–55.

    Article  Google Scholar 

  10. Harwood NE, Batista FD . Early events in B cell activation. Annu Rev Immunol 2010; 28: 185–210.

    Article  CAS  PubMed  Google Scholar 

  11. Veldurthy A, Patz M, Hagist S, Pallasch CP, Wendtner CM, Hallek M et al. The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes. Blood 2008; 112: 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  12. Amrein L, Hernandez TA, Ferrario C, Johnston J, Gibson SB, Panasci L et al. Dasatinib sensitizes primary chronic lymphocytic leukaemia lymphocytes to chlorambucil and fludarabine in vitro. Br J Haematol 2008; 143: 698–706.

    Article  CAS  PubMed  Google Scholar 

  13. Yang C, Lu P, Lee FY, Chadburn A, Barrientos JC, Leonard JP et al. Tyrosine kinase inhibition in diffuse large B-cell lymphoma: molecular basis for antitumor activity and drug resistance of dasatinib. Leukemia 2008; 22: 1755–1766.

    Article  CAS  PubMed  Google Scholar 

  14. Lu P, Yang C, Guasparri I, Harrington W, Wang YL, Cesarman E . Early events of B-cell receptor signaling are not essential for the proliferation and viability of AIDS-related lymphoma. Leukemia 2009; 23: 807–810.

    Article  CAS  PubMed  Google Scholar 

  15. Song Z, Lu P, Furman RR, Leonard JP, Martin P, Tyrell L et al. Activities of SYK and PLCgamma2 predict apoptotic response of CLL cells to SRC tyrosine kinase inhibitor dasatinib. Clin Cancer Res 2010; 16: 587–599.

    Article  CAS  PubMed  Google Scholar 

  16. McCaig AM, Cosimo E, Leach MT, Michie AM . Dasatinib inhibits B cell receptor signalling in chronic lymphocytic leukaemia but novel combination approaches are required to overcome additional pro-survival microenvironmental signals. Br J Haematol 2011; 153: 199–211.

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008; 111: 2230–2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng S, Coffey G, Zhang XH, Shaknovich R, Song Z, Lu P et al. SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 2011; 118: 6342–6352.

    Article  CAS  PubMed  Google Scholar 

  19. Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114: 1029–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gobessi S, Laurenti L, Longo PG, Carsetti L, Berno V, Sica S et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 2009; 23: 686–697.

    Article  CAS  PubMed  Google Scholar 

  21. Buchner M, Baer C, Prinz G, Dierks C, Burger M, Zenz T et al. Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood 2010; 115: 4497–4506.

    Article  CAS  PubMed  Google Scholar 

  22. Suljagic M, Longo PG, Bennardo S, Perlas E, Leone G, Laurenti L et al. The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Emu- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood 2010; 116: 4894–4905.

    Article  CAS  PubMed  Google Scholar 

  23. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010; 116: 2078–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H et al. PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 2010; 116: 1460–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011; 117: 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Amrein PC, Attar EC, Takvorian T, Hochberg EP, Ballen KK, Leahy KM et al. Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res 2011; 17: 2977–2986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Friedberg JW, Sharman J, Sweetenham J, Johnston PB, Vose JM, Lacasce A et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010; 115: 2578–2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Furman RR, Byrd JC, Brown JR, Coutre SE, Benson DM Jr, Wagner-Johnston ND et al. CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-Kinase P110{delta}, demonstrates clinical activity and pharmacodynamic effects in patients with relapsed or refractory chronic lymphocytic leukemia. ASH Annual Meeting Abstracts 2010; 116: 55.

    Google Scholar 

  30. Coutre SE, Byrd JC, Furman RR, Brown JR, Benson DM, Wagner-Johnston ND et al. Phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110d, in patients with previously treated chronic lymphocytic leukemia. ASCO Meeting Abstracts 2011; 29 (15_suppl): 6631.

    Google Scholar 

  31. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med 2013; 369: 32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA 2010; 107: 13075–13080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Byrd JC, Blum KA, Burger JA, Coutre SE, Sharman JP, Furman RR et al. Activity and tolerability of the Bruton's tyrosine kinase (Btk) inhibitor PCI-32765 in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL): Interim results of a phase Ib/II study. ASCO Meeting Abstracts 2011; 29 (15_suppl): 6508.

    Google Scholar 

  34. Serpa M, Bendit I, Seguro F, Xavier F, Cavalcante M, Steinbaum D et al. Response to dasatinib in a patient with concomitant chronic myeloid leukemia and chronic lymphocytic leukemia. Acta Haematol 2010; 124: 105–109.

    Article  PubMed  Google Scholar 

  35. Cheson BD, Byrd JC, Rai KR, Kay NE, O'Brien SM, Flinn IW et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol 2012; 30: 2820–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119: 2590–2594.

    Article  CAS  PubMed  Google Scholar 

  38. Smith MA, Houghton P . A proposal regarding reporting of in vitro testing results. Clin Cancer Res 2013; 19: 2828–2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 2009; 114: 4441–4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011; 117: 6287–6296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013; 31: 88–94.

    Article  CAS  PubMed  Google Scholar 

  42. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  PubMed  Google Scholar 

  43. Herman SE, Sun X, McAuley EM, Hsieh MM, Pittaluga S, Raffeld M et al. Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 2013; 27: 2311–2321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calissano C, Damle RN, Hayes G, Murphy EJ, Hellerstein MK, Moreno C et al. In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia. Blood 2009; 114: 4832–4842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caligaris-Cappio F, Ghia P . Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 2008; 26: 4497–4503.

    Article  CAS  PubMed  Google Scholar 

  46. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Plander M, Seegers S, Ugocsai P, Diermeier-Daucher S, Ivanyi J, Schmitz G et al. Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles. Leukemia 2009; 23: 2118–2128.

    Article  CAS  PubMed  Google Scholar 

  48. Damle RN, Temburni S, Calissano C, Yancopoulos S, Banapour T, Sison C et al. CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells. Blood 2007; 110: 3352–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank patients for participating in this study. This study is partially supported by funds from the Leukemia and Lymphoma Society and the Prince Family Foundation to YLW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y L Wang.

Ethics declarations

Competing interests

JJB was an employee of Pharmacyclics. JPL and RRF receive compensation and honoraria as consultants of Pharmacyclics. All the remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Ma, J., Guo, A. et al. BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity. Leukemia 28, 649–657 (2014). https://doi.org/10.1038/leu.2013.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.358

Keywords

This article is cited by

Search

Quick links