Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia

Abstract

The purpose of this study was to compare the expression and function of NOTCH1 in chronic lymphocytic leukemia (CLL) patients harboring a wild-type (WT) or mutated NOTCH1 gene. NOTCH1 mRNA and surface protein expression levels were independent of the NOTCH1 gene mutational status, consistent with the requirement for NOTCH1 signaling in this leukemia. However, compared with NOTCH1-WT CLL, mutated cases displayed biochemical and transcriptional evidence of an intense activation of the NOTCH1 pathway. In vivo, expression and activation of NOTCH1 was highest in CLL cells from the lymph nodes as confirmed by immunohistochemistry. In vitro, the NOTCH1 pathway was rapidly downregulated, suggesting that signaling relies upon micro-environmental interactions even in NOTCH1-mutated cases. Accordingly, co-culture of Jagged1+ (the NOTCH1 ligand) nurse-like cells with autologous CLL cells sustained NOTCH1 activity over time and mediated CLL survival and resistance against pro-apoptotic stimuli, both abrogated when NOTCH1 signaling was pharmacologically switched off. Together, these results show that NOTCH1 mutations have stabilizing effects on the NOTCH1 pathway in CLL. Furthermore, micro-environmental interactions appear critical in activating the NOTCH1 pathway both in WT and mutated patients. Finally, NOTCH1 signals may create conditions that favor drug resistance, thus making NOTCH1 a potential molecular target in CLL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  PubMed  Google Scholar 

  2. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S . From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010; 10: 37–50.

    Article  CAS  PubMed  Google Scholar 

  3. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  4. Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N . CD38 and chronic lymphocytic leukemia: a decade later. Blood 2011; 118: 3470–3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zucchetto A, Bomben R, Dal Bo M, Bulian P, Benedetti D, Nanni P et al. CD49d in B-cell chronic lymphocytic leukemia: correlated expression with CD38 and prognostic relevance. Leukemia 2006; 20: 523–525, (author reply 528–529).

    Article  CAS  PubMed  Google Scholar 

  6. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  7. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  8. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaidano G, Foa R, Dalla-Favera R . Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest 2012; 122: 3432–3438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Knight SJ, Yau C, Clifford R, Timbs AT, Sadighi Akha E, Dreau HM et al. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 2012; 26: 1564–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ . Functions of notch signaling in the immune system: consensus and controversies. Annu Rev Immunol 2010; 28: 343–365.

    Article  PubMed  Google Scholar 

  17. Lobry C, Oh P, Aifantis I . Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J Exp Med 2011; 208: 1931–1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A . Signalling downstream of activated mammalian Notch. Nature 1995; 377: 355–358.

    Article  CAS  PubMed  Google Scholar 

  19. Kato H, Taniguchi Y, Kurooka H, Minoguchi S, Sakai T, Nomura-Okazaki S et al. Involvement of RBP-J in biological functions of mouse Notch1 and its derivatives. Development 1997; 124: 4133–4141.

    CAS  PubMed  Google Scholar 

  20. Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG . Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 2013; 27: 1059–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis RL, Turner DL . Vertebrate hairy and enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 2001; 20: 8342–8357.

    Article  CAS  PubMed  Google Scholar 

  22. Iso T, Kedes L, Hamamori Y . HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194: 237–255.

    Article  CAS  PubMed  Google Scholar 

  23. Matsuno K, Eastman D, Mitsiades T, Quinn AM, Carcanciu ML, Ordentlich P et al. Human deltex is a conserved regulator of Notch signalling. Nat Genet 1998; 19: 74–78.

    Article  CAS  PubMed  Google Scholar 

  24. Kopan R, Ilagan MX . The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ordentlich P, Lin A, Shen CP, Blaumueller C, Matsuno K, Artavanis-Tsakonas S et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol Cell Biol 1998; 18: 2230–2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jang J, Choi YI, Choi J, Lee KY, Chung H, Jeon SH et al. Notch1 confers thymocytes a resistance to GC-induced apoptosis through Deltex1 by blocking the recruitment of p300 to the SRG3 promoter. Cell Death Differ 2006; 13: 1495–1505.

    Article  CAS  PubMed  Google Scholar 

  27. Huber RM, Rajski M, Sivasankaran B, Moncayo G, Hemmings BA, Merlo A . Deltex-1 activates mitotic signaling and proliferation and increases the clonogenic and invasive potential of U373 and LN18 glioblastoma cells and correlates with patient survival. PLoS One 2013; 8: e57793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2009; 113: 856–865.

    Article  CAS  PubMed  Google Scholar 

  29. Hajdu M, Sebestyen A, Barna G, Reiniger L, Janosi J, Sreter L et al. Activity of the notch-signalling pathway in circulating human chronic lymphocytic leukaemia cells. Scand J Immunol 2007; 65: 271–275.

    Article  CAS  PubMed  Google Scholar 

  30. Paganin M, Ferrando A . Molecular pathogenesis and targeted therapies for NOTCH1-induced T-cell acute lymphoblastic leukemia. Blood Rev 2011; 25: 83–90.

    Article  CAS  PubMed  Google Scholar 

  31. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell'Aquila M, Kipps TJ . Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96: 2655–2663.

    CAS  PubMed  Google Scholar 

  32. Deaglio S, Vaisitti T, Aydin S, Bergui L, D'Arena G, Bonello L et al. CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential. Blood 2007; 110: 4012–4021.

    Article  CAS  PubMed  Google Scholar 

  33. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 2000; 5: 207–216.

    Article  CAS  PubMed  Google Scholar 

  34. Deaglio S, Vaisitti T, Bergui L, Bonello L, Horenstein AL, Tamagnone L et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 2005; 105: 3042–3050.

    Article  CAS  PubMed  Google Scholar 

  35. Meyerson M, Gabriel S, Getz G . Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2010; 11: 685–696.

    Article  CAS  PubMed  Google Scholar 

  36. Mardis ER . A decade's perspective on DNA sequencing technology. Nature 2011; 470: 198–203.

    Article  CAS  PubMed  Google Scholar 

  37. Chin L, Hahn WC, Getz G, Meyerson M . Making sense of cancer genomic data. Genes Dev 2011; 25: 534–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Landau DA, Wu CJ . Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med 2013; 5: 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  41. Van de Walle I, De Smet G, De Smedt M, Vandekerckhove B, Leclercq G, Plum J et al. An early decrease in Notch activation is required for human TCR-alphabeta lineage differentiation at the expense of TCR-gammadelta T cells. Blood 2009; 113: 2988–2998.

    Article  CAS  PubMed  Google Scholar 

  42. Lleo A, Berezovska O, Ramdya P, Fukumoto H, Raju S, Shah T et al. Notch1 competes with the amyloid precursor protein for gamma-secretase and down-regulates presenilin-1 gene expression. J Biol Chem 2003; 278: 47370–47375.

    Article  CAS  PubMed  Google Scholar 

  43. Kluk MJ, Ashworth T, Wang H, Knoechel B, Mason EF, Morgan EA et al. Gauging NOTCH1 activation in cancer using immunohistochemistry. PLoS One 2013; 8: e67306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto N, Yamamoto S, Inagaki F, Kawaichi M, Fukamizu A, Kishi N et al. Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem 2001; 276: 45031–45040.

    Article  CAS  PubMed  Google Scholar 

  45. Deftos ML, Huang E, Ojala EW, Forbush KA, Bevan MJ . Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 2000; 13: 73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI . Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004; 103: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  47. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Bea S et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2013; 27: 1100–1106.

    Article  CAS  PubMed  Google Scholar 

  48. Foa R, Del Giudice I, Guarini A, Rossi D, Gaidano G . Clinical implications of the molecular genetics of chronic lymphocytic leukemia. Haematologica 2013; 98: 675–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oscier DG, Rose-Zerilli MJ, Winkelmann N, Gonzalez de Castro D, Gomez B, Forster J et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013; 121: 468–475.

    Article  CAS  PubMed  Google Scholar 

  50. Stilgenbauer S, Busch R, Schnaiter A, Paschka P, Rossi M, Döhner K et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2012; 120: 433.

    Google Scholar 

  51. Tosello V, Ferrando AA . The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol 2013; 4: 199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma W, Gutierrez A, Goff DJ, Geron I, Sadarangani A, Jamieson CA et al. NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PLoS One 2012; 7: e39725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia 2014; 28: 278–288.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work supported by grants from the Italian Ministries of Education, University and Research (Futuro in Ricerca 2008 no. RBFR08ATLH and 2012 no. RBFRI2DICB), Italian Ministry of Health (Bando Giovani Ricercatori 2008 no. GR-2008-1138053 and 2010 no. GR-2010-2317594), Associazione Italiana per la Ricerca sul Cancro Foundation (IG 12754, Special Program Molecular Clinical Oncology 5 × 1000 No. 10007 and My First AIRC grant no. 13470), Compagnia di San Paolo (grant no. PMN_call_2012_0071), Fondazione Cariplo (call 2012) and local funds of the University of Turin. FA is supported by a Fondazione Veronesi fellowship. BG is supported by grant from the Croatian Ministry of Science, Education and Sport (no.198-1980955-0953). We would like to thank Katiuscia Gizzi and Maria Lamusta for their excellent technical assistance.

Author contributions

FA, BG, SS, TV and CC acquired data; DR, MC, LL GD’A and OJ provided patient samples; GI provided LN samples; FA, DR, GG and GI contributed to interpreting results; FA and SD conceived and designed the work and interpreted results; and SD wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Deaglio.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arruga, F., Gizdic, B., Serra, S. et al. Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 28, 1060–1070 (2014). https://doi.org/10.1038/leu.2013.319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.319

Keywords

This article is cited by

Search

Quick links