Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts

Abstract

The effects of the Akt inhibitor perifosine and the RAF/MEK/ERK inhibitor sorafenib were investigated using two CD30+Hodgkin lymphoma cell lines (L-540 and HDLM-2) and the CD30HD-MyZ histiocytic cell line. The combined perifosine/sorafenib treatment significantly inhibited mitogen-activated protein kinase and Akt phosphorylation in two of the three cell lines. Profiling of the responsive cell lines revealed that perifosine/sorafenib decreased the amplitude of transcriptional signatures that are associated with the cell cycle, DNA replication and cell death. Tribbles homolog 3 (TRIB3) was identified as the main mediator of the in vitro and in vivo antitumor activity of perifosine/sorafenib. Combined treatment compared with single agents significantly suppressed cell growth (40–80%, P<0.001), induced severe mitochondrial dysfunction and necroptotic cell death (up to 70%, P<0.0001) in a synergistic manner. Furthermore, in vivo xenograft studies demonstrated a significant reduction in tumor burden (P<0.0001), an increased survival time (81 vs 45 days, P<0.0001), an increased apoptosis (2- to 2.5-fold, P<0.0001) and necrosis (2- to 8-fold, P<0.0001) in perifosine/sorafenib-treated animals compared with mice receiving single agents. These data provide a rationale for clinical trials using perifosine/sorafenib combination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lowry L, Hoskin P, Linch D . Developments in the management of Hodgkin’s lymphoma. Lancet 2010; 375: 786–788.

    Article  Google Scholar 

  2. Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, Smith T et al. Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians 2012; 62: 220–241.

    Google Scholar 

  3. Crump M . Management of Hodgkin lymphoma in relapse after autologous stem cell transplant. Hematology Am Soc Hematol Educ Program 2008; 1: 326–333.

    Article  Google Scholar 

  4. Moskowitz AJ, Perales M-A, Kewalramani T, Yahalom J, Castro-Malaspina H, Zhang Z et al. Outcomes for patients who fail high dose chemoradiotherapy and autologous stem cell rescue for relapsed and primary refractory Hodgkin lymphoma. Br J Haematol 2009; 146: 158–163.

    Article  Google Scholar 

  5. Younes A . Beyond chemotherapy: new agents for targeted treatment of lymphoma. Nat Rev Clin Oncol 2011; 8: 85–96.

    Article  CAS  Google Scholar 

  6. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 2010; 363: 1812–1821.

    Article  CAS  Google Scholar 

  7. Re D, Thomas RK, Behringer K, Diehl V . From Hodgkin disease to Hodgkin lymphoma: biologic insights and therapeutic potential. Blood 2005; 105: 4553–4560.

    Article  CAS  Google Scholar 

  8. Dickinson M, Ritchie D, DeAngelo DJ, Spencer A, Ottmann OG, Fischer T et al. Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin Lymphoma. Br J Haematol 2009; 147: 97–101.

    Article  CAS  Google Scholar 

  9. Boll B, Borchmann P, Diehl V . Emerging drugs for Hodgkin’s lymphoma. Expert Opin Emerg Drugs 2010; 15: 585–595.

    Article  Google Scholar 

  10. De J, Brown RE . Tissue-microarray based immunohistochemical analysis of survival pathways in nodular sclerosing classical Hodgkin lymphoma as compared with Non-Hodgkin’s lymphoma. Int J Clin Exp Med 2010; 3: 55–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Younes A . Novel treatment strategies for patients with relapsed classical Hodgkin lymphoma. Hematology Am Soc Hematol Educ Program 2009, 507–519.

    Article  Google Scholar 

  12. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 2003; 102: 1019–1027.

    Article  CAS  Google Scholar 

  13. Richardson PG, Wolf J, Jakubowiak A, Zonder J, Lonial S, Irwin D et al. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol 2011; 29: 4243–4249.

    Article  CAS  Google Scholar 

  14. Mitsiades CS, Hideshima T, Chauhan D, McMillin DW, Klippel S, Laubach JP et al. Emerging treatments for multiple myeloma: beyond immunomodulatory drugs and bortezomib. Semin Hematol 2009; 46: 166–175.

    Article  CAS  Google Scholar 

  15. Pinton G, Manente AG, Angeli G, Mutti L, Moro L . Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma. PLoS One 2012; 7: e36856.

    Article  CAS  Google Scholar 

  16. Dasmahapatra GP, Didolkar P, Alley MC, Ghosh S, Sausville EA, Roy KK . In vitro combination treatment with perifosine and UCN-01 demonstrates synergism against prostate (PC-3) and lung (A549) epithelial adenocarcinoma cell lines. Clin Cancer Res 2004; 10: 5242–5252.

    Article  CAS  Google Scholar 

  17. Nyakern M, Cappellini A, Mantovani I, Martelli AM . Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways. Mol Cancer Ther 2006; 5: 1559–1570.

    Article  CAS  Google Scholar 

  18. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006; 107: 4053–4062.

    Article  CAS  Google Scholar 

  19. Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P et al. Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 2005; 65: 2422–2432.

    Article  CAS  Google Scholar 

  20. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M . Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 3129–3140.

    Article  CAS  Google Scholar 

  21. Guidetti A, Carlo-Stella C, Locatelli SL, Malorni W, Pierdominici M, Barbati C et al. Phase II study of sorafenib in patients with relapsed or refractory lymphoma. Br J Haematol 2012; 158: 108–119.

    Article  CAS  Google Scholar 

  22. Diehl V, Kirchner HH, Schaadt M, Fonatsch C, Stein H, Gerdes J et al. Hodgkin’s disease: establishment and characterization of four in vitro cell lies. J Cancer Res Clin Oncol 1981; 101: 111–124.

    Article  CAS  Google Scholar 

  23. Drexler HG, Gaedicke G, Lok MS, Diehl V, Minowada J . Hodgkin’s disease derived cell lines HDLM-2 and L-428: comparison of morphology, immunological and isoenzyme profiles. Leuk Res 1986; 10: 487–500.

    Article  CAS  Google Scholar 

  24. Bargou RC, Mapara MY, Zugck C, Daniel PT, Pawlita M, Dohner H et al. Characterization of a novel Hodgkin cell line, HD-MyZ, with myelomonocytic features mimicking Hodgkin’s disease in severe combined immunodeficient mice. J Exp Med 1993; 177: 1257–1268.

    Article  CAS  Google Scholar 

  25. Küppers R, Re D . Nature of Reed-Sternberg and L & H cells, and their molecular biology in Hodgkin lymphoma. In: Hoppe RT, Mauch PM, Armitage JO, Diehl V (eds) Hodgkin Lymphoma. Lippincott Williams & Wilkins, 2007; pp 74–88.

    Google Scholar 

  26. Carlo-Stella C, Guidetti A, Di Nicola M, Lavazza C, Cleris L, Sia D et al. IFN-gamma enhances the antimyeloma activity of the fully human anti-human leukocyte antigen-DR monoclonal antibody 1D09C3. Cancer Res 2007; 67: 3269–3275.

    Article  CAS  Google Scholar 

  27. Carlo-Stella C, Di Nicola M, Turco MC, Cleris L, Lavazza C, Longoni P et al. The anti-human leukocyte antigen-DR monoclonal antibody 1D09C3 activates the mitochondrial cell death pathway and exerts a potent antitumor activity in lymphoma-bearing nonobese diabetic/severe combined immunodeficient mice. Cancer Research 2006; 66: 1799–1808.

    Article  CAS  Google Scholar 

  28. Lavazza C, Carlo-Stella C, Giacomini A, Cleris L, Righi M, Sia D et al. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood 2010; 115: 2231–2240.

    Article  CAS  Google Scholar 

  29. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  30. Zhang J, Yang PL, Gray NS . Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 2009; 9: 28–39.

    Article  Google Scholar 

  31. Kim YS, Jin HO, Seo SK, Woo SH, Choe TB, An S et al. Sorafenib induces apoptotic cell death in human non-small cell lung cancer cells by down-regulating mammalian target of rapamycin (mTOR)-dependent survivin expression. Biochem Pharmacol 2011; 82: 216–226.

    Article  CAS  Google Scholar 

  32. Du K, Herzig S, Kulkarni RN, Montminy M . TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 2003; 300: 1574–1577.

    Article  CAS  Google Scholar 

  33. Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC et al. Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 2004; 279: 42703–42708.

    Article  CAS  Google Scholar 

  34. Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chemical Biology 2008; 4: 313–321.

    Article  CAS  Google Scholar 

  35. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 2009; 137: 1112–1123.

    Article  CAS  Google Scholar 

  36. Teachey DT, Grupp SA, Brown VI . Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Haematol 2009; 145: 569–580.

    Article  CAS  Google Scholar 

  37. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R et al. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 2007; 318: 287–290.

    Article  CAS  Google Scholar 

  38. Hoeflich KP, O’Brien C, Boyd Z, Cavet G, Guerrero S, Jung K et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res 2009; 15: 4649–4664.

    Article  CAS  Google Scholar 

  39. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H . TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 2005; 24: 1243–1255.

    Article  CAS  Google Scholar 

  40. Rahmani M, Davis EM, Crabtree TR, Habibi JR, Nguyen TK, Dent P et al. The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress. Mol Cell Biol 2007; 27: 5499–5513.

    Article  CAS  Google Scholar 

  41. Vara D, Salazar M, Olea-Herrero N, Guzman M, Velasco G, Diaz-Laviada I . Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ 2011; 18: 1099–1111.

    Article  CAS  Google Scholar 

  42. Gills JJ, Dennis PA . Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep 2009; 11: 102–110.

    Article  CAS  Google Scholar 

  43. Walker T, Mitchell C, Park MA, Yacoub A, Graf M, Rahmani M et al. Sorafenib and vorinostat kill colon cancer cells by CD95-dependent and -independent mechanisms. Mol Pharmacol 2009; 76: 342–355.

    Article  CAS  Google Scholar 

  44. Fu L, Kim YA, Wang X, Wu X, Yue P, Lonial S et al. Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res 2009; 69: 8967–8976.

    Article  CAS  Google Scholar 

  45. Bareford MD, Park MA, Yacoub A, Hamed HA, Tang Y, Cruickshanks N et al. Sorafenib enhances pemetrexed cytotoxicity through an autophagy-dependent mechanism in cancer cells. Cancer Res 2011; 71: 4955–4967.

    Article  CAS  Google Scholar 

  46. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I et al. The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 2008; 22: 1106–1116.

    Article  CAS  Google Scholar 

  47. Floryk D, Thompson TC . Perifosine induces differentiation and cell death in prostate cancer cells. Cancer Letters 2008; 266: 216–226.

    Article  CAS  Google Scholar 

  48. Dengler MA, Staiger AM, Gutekunst M, Hofmann U, Doszczak M, Scheurich P et al. Oncogenic stress induced by acute hyper-activation of Bcr-Abl leads to cell death upon induction of excessive aerobic glycolysis. PLoS One 2011; 6: e25139.

    Article  CAS  Google Scholar 

  49. Christofferson DE, Yuan J . Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 2010; 22: 263–268.

    Article  CAS  Google Scholar 

  50. Baritaud M, Cabon L, Delavallee L, Galan-Malo P, Gilles ME, Brunelle-Navas MN et al. AIF-mediated caspase-independent necroptosis requires ATM and DNA-PK-induced histone H2AX Ser139 phosphorylation. Cell Death Dis 2012; 3: e390.

    Article  CAS  Google Scholar 

  51. Vink SR, van Blitterswijk WJ, Schellens JH, Verheij M . Rationale and clinical application of alkylphospholipid analogues in combination with radiotherapy. Cancer Treat Rev 2007; 33: 191–202.

    Article  CAS  Google Scholar 

  52. Nguyen TK, Jordan N, Friedberg J, Fisher RI, Dent P, Grant S . Inhibition of MEK/ERK1/2 sensitizes lymphoma cells to sorafenib-induced apoptosis. Leuk Res 2010; 34: 379–386.

    Article  CAS  Google Scholar 

  53. Hennessy BT, Lu Y, Poradosu E, Yu Q, Yu S, Hall H et al. Pharmacodynamic markers of perifosine efficacy. Clin Cancer Res 2007; 13: 7421–7431.

    Article  CAS  Google Scholar 

  54. Tiacci E, Doring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G et al. Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 2012; 120: 4609–4620.

    Article  CAS  Google Scholar 

  55. Cramer P, Hallek M . Hematological cancer in 2011: new therapeutic targets and treatment strategies. Nat Rev Clin Oncol 2012; 9: 72–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Ministry of Education, University and Research (Rome, Italy), the Ministry of Health (Ricerca Finalizzata 2008 and 2010 to CC-S), and the Italian Association for Cancer Research (MCO—9998) (AMG and CC-S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A M Gianni or C Carlo-Stella.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, S., Giacomini, A., Guidetti, A. et al. Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts. Leukemia 27, 1677–1687 (2013). https://doi.org/10.1038/leu.2013.28

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.28

Keywords

This article is cited by

Search

Quick links