Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients

Abstract

We analyzed a large cohort of 1160 untreated CLL patients for novel genetic markers (SF3B1, NOTCH1, FBXW7, MYD88, XPO1) in the context of molecular, immunophenotypic and cytogenetic data. NOTCH1 mutations (mut) (12.3%), SF3B1mut (9.0%) and TP53mut (7.1%) were more frequent than XPO1mut (3.4%), FBXW7mut (2.5%) and MYD88mut (1.5%). SF3B1mut, NOTCH1mut, TP53mut and XPO1mut were highly correlated to unmutated, whereas MYD88mut were associated with mutated IGHV status. Associations of diverse cytogenetic aberrations and mutations emerged: (1) SF3B1mut with del(11q), (2) NOTCH1mut and FBXW7mut with trisomy 12 and nearly exclusiveness of SF3B1mut, (3) MYD88mut with del(13q) sole and low frequencies of SF3B1mut, NOTCH1mut and FBXW7mut. In patients with normal karyotype only SF3B1mut were frequent, whereas NOTCH1mut rarely occurred. An adverse prognostic impact on time to treatment (TTT) and overall survival (OS) was observed for SF3B1mut, NOTCH1mut and TP53 disruption. In multivariate analyses SF3B1mut, IGHV mutational status and del(11q) were the only independent genetic markers for TTT, whereas for OS SF3B1mut, IGHV mutational status and TP53 disruption presented with significant impact. Finally, our data suggest that analysis of gene mutations refines the risk stratification of cytogenetic prognostic subgroups and confirms data of a recently proposed model integrating molecular and cytogenetic data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ghia P, Stamatopoulos K, Belessi C, Moreno C, Stilgenbauer S, Stevenson F et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007; 21: 1–3.

    Article  CAS  Google Scholar 

  2. Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood 2008; 112: 3322–3329.

    Article  CAS  Google Scholar 

  3. Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 2009; 23: 117–124.

    Article  CAS  PubMed  Google Scholar 

  4. Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 2009; 15: 995–1004.

    Article  CAS  Google Scholar 

  5. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  PubMed  Google Scholar 

  7. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2011; 44: 47–52.

    Article  PubMed  Google Scholar 

  8. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  Google Scholar 

  9. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    Article  CAS  PubMed  Google Scholar 

  10. Oscier DG, Rose-Zerilli MJ, Winkelmann N, Gonzalez De Castro D, Gomez B, Forster J et al. The clinical significance of NOTCH1 and SF3B1 mutations in the UK LRF CLL4 trial. Blood 2013; 121: 468–475.

    Article  CAS  PubMed  Google Scholar 

  11. Mansouri L, Cahill N, Gunnarsson R, Smedby KE, Tjonnfjord E, Hjalgrim H et al. NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia 2013; 27: 512–514.

    Article  CAS  PubMed  Google Scholar 

  12. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412.

    Article  CAS  PubMed  Google Scholar 

  13. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    Article  CAS  PubMed  Google Scholar 

  14. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331.

    Article  CAS  PubMed  Google Scholar 

  15. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    Article  CAS  PubMed  Google Scholar 

  16. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  PubMed  Google Scholar 

  17. O'Neill LA, Bowie AG . The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7: 353–364.

    Article  CAS  PubMed  Google Scholar 

  18. Dong X, Biswas A, Suel KE, Jackson LK, Martinez R, Gu H et al. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature 2009; 458: 1136–1141.

    Article  CAS  PubMed  Google Scholar 

  19. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th ed. International Agency for Research on Cancer (IARC): Lyon, 2008.

    Google Scholar 

  20. Kern W, Dicker F, Schnittger S, Haferlach C, Haferlach T . Correlation of flow cytometrically determined expression of ZAP-70 using the SBZAP antibody with IgVH mutation status and cytogenetics in 1,229 patients with chronic lymphocytic leukemia. Cytometry B Clin Cytom 2009; 76: 385–393.

    Article  PubMed  Google Scholar 

  21. Kern W, Bacher U, Haferlach C, Alpermann T, Dicker F, Schnittger S et al. Frequency and prognostic impact of the aberrant CD8 expression in 5,523 patients with chronic lymphocytic leukemia. Cytometry B Clin Cytom 2012; 82: 145–150.

    Article  PubMed  Google Scholar 

  22. Matutes E, Owusu-Ankomah K, Morilla R, Garcia MJ, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    CAS  Google Scholar 

  23. Matutes E, Attygalle A, Wotherspoon A, Catovsky D . Diagnostic issues in chronic lymphocytic leukaemia (CLL). Best Pract Res Clin Haematol 2010; 23: 3–20.

    Article  CAS  PubMed  Google Scholar 

  24. Weissmann S, Roller A, Jeromin S, Hernandez M, Abaigar M, Hernandez-Rivas JM et al. Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): a study on 852 patients. Leukemia 2013.

  25. Jeromin S, Haferlach T, Grossmann V, Alpermann T, Kowarsch A, Haferlach C et al. High frequencies of SF3B1 and JAK2 mutations in refractory anemia with ring sideroblasts associated with marked thrombocytosis strengthen the assignment to the category of myelodysplastic/myeloproliferative neoplasms. Haematologica 2013; 98: e15–e17.

    Article  PubMed  Google Scholar 

  26. Kohlmann A, Klein HU, Weissmann S, Bresolin S, Chaplin T, Cuppens H et al. The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories. Leukemia 2011; 25: 1840–1848.

    Article  CAS  PubMed  Google Scholar 

  27. Grossmann V, Roller A, Klein HU, Weissmann S, Kern W, Haferlach C et al. Robustness of amplicon deep sequencing underlines its utility in clinical applications. J Mol Diagn 2013; 15: 473–484.

    Article  CAS  PubMed  Google Scholar 

  28. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C . Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood 2006; 108: 3152–3160.

    Article  CAS  PubMed  Google Scholar 

  29. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T . Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia 2007; 21: 2442–2451.

    Article  CAS  PubMed  Google Scholar 

  30. ISCN (1995)Guidelines for cancer cytogenetics, Supplement to: An International System for Human Cytogenetic Nomenclature. Mitelman F, Karger S (eds), 1995.

  31. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  32. Tobin G, Thunberg U, Johnson A, Thorn I, Soderberg O, Hultdin M et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 2002; 99: 2262–2264.

    Article  CAS  PubMed  Google Scholar 

  33. Thorselius M, Krober A, Murray F, Thunberg U, Tobin G, Buhler A et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood 2006; 107: 2889–2894.

    Article  CAS  Google Scholar 

  34. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  PubMed  Google Scholar 

  35. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  36. Rosati E, Sabatini R, Rampino G, Tabilio A, Di IM, Fettucciari K et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2009; 113: 856–865.

    Article  CAS  Google Scholar 

  37. Orlicky S, Tang X, Willems A, Tyers M, Sicheri F . Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 2003; 112: 243–256.

    Article  CAS  PubMed  Google Scholar 

  38. Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U . The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem 2001; 276: 35847–35853.

    Article  CAS  Google Scholar 

  39. Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A et al. SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol 2001; 21: 7403–7415.

    Article  CAS  PubMed  Google Scholar 

  40. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 2007; 204: 1825–1835.

    Article  CAS  PubMed  Google Scholar 

  41. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med 2012; 367: 826–833.

    Article  CAS  PubMed  Google Scholar 

  42. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011; 470: 115–119.

    Article  CAS  PubMed  Google Scholar 

  43. Schwaederle M, Ghia E, Rassenti LZ, Obara M, l' Aquila ML, Fecteau JF et al. Subclonal evolution involving SF3B1 mutations in chronic lymphocytic leukemia. Leukemia 2013; 27: 1214–1217.

    Article  CAS  PubMed  Google Scholar 

  44. Strefford JC, Sutton LA, Baliakas P, Agathangelidis A, Malcikova J, Plevova K et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 2013.

  45. Rossi D, Spina V, Bomben R, Rasi S, Dal-Bo M, Bruscaggin A et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood 2013; 121: 4902–4905.

    Article  CAS  Google Scholar 

  46. Dreger P, Schnaiter A, Zenz T, Bottcher S, Rossi M, Paschka P et al. TP53, SF3B1, and NOTCH1 mutations and outcome of allotransplantation for chronic lymphocytic leukemia: six-year follow-up of the GCLLSG CLL3X trial. Blood 2013; 121: 3284–3288.

    Article  CAS  PubMed  Google Scholar 

  47. Shedden K, Li Y, Ouillette P, Malek SN . Characteristics of chronic lymphocytic leukemia with somatically acquired mutations in NOTCH1 exon 34. Leukemia 2012; 26: 1108–1110.

    Article  CAS  PubMed  Google Scholar 

  48. Villamor N, Conde L, Martinez-Trillos A, Cazorla M, Navarro A, Bea S et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia 2013; 27: 1100–1106.

    Article  CAS  PubMed  Google Scholar 

  49. Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D, Kater AP et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia 2012; 26: 1458–1461.

    Article  CAS  Google Scholar 

  50. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013; 152: 714–726.

    Article  CAS  PubMed  Google Scholar 

  51. Foa R, Del G I, Guarini A, Rossi D, Gaidano G . Clinical implications of the molecular genetics of chronic lymphocytic leukemia. Haematologica 2013; 98: 675–685.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all co-workers in our laboratory for their excellent technical assistance and all patients and clinicians for their participation in this study. Next-generation deep-sequencing studies were supported in part by the IRON-II study framework (Roche Diagnostics, Penzberg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Schnittger.

Ethics declarations

Competing interests

SS, WK, CH, and TH are part owners of the MLL Munich Leukemia Laboratory. SJ, SW, VG, KB, FD, TA, AR and AK are employed by the MLL Munich Leukemia Laboratory.

Additional information

SJ and SS designed the study, interpreted the data and wrote the manuscript. SJ, SW, VG, KB, FD and AK did molecular analyses. CH was responsible for chromosome banding and FISH analyses, WK for immunophenotyping and TH for cytomorphologic analyses. AR and TA collected and analyzed clinical data. All authors read and contributed to the final version of the manuscript.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeromin, S., Weissmann, S., Haferlach, C. et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 28, 108–117 (2014). https://doi.org/10.1038/leu.2013.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.263

Keywords

This article is cited by

Search

Quick links