Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies

Abstract

The role of cancer-associated fibroblasts (CAFs) has not been previously studied in multiple myeloma (MM). Here, cytofluorimetric analysis revealed higher proportions of bone marrow (BM) CAFs in patients with active MM (both at diagnosis and relapse) compared with patients in remission or those with monoclonal gammopathy of undetermined significance or deficiency anemia (controls). CAFs from MM patients produced increased levels of transforming growth factor-β, interleukin-6, stromal cell-derived factor-1α, insulin-like growth factor-1, vascular endothelial growth factor and fibroblast growth factor-2 and displayed an activated and heterogeneous phenotype, which supported their origin from resident fibroblasts, endothelial cells and hematopoietic stem and progenitor cells via the endothelial–mesenchymal transition as well as mesenchymal stem cells via the mesenchymal transition, as both of these processes are induced by MM cells and CAFs. Active MM CAFs fostered chemotaxis, adhesion, proliferation and apoptosis resistance in MM cells through cytokine signals and cell-to-cell contact, which were inhibited by blocking CXCR4, several integrins and fibronectin. MM cells also induced the CAFs proliferation. In syngeneic 5T33MM and xenograft mouse models, MM cells induced the expansion of CAFs, which, in turn, promoted MM initiation and progression as well as angiogenesis. In BM biopsies from patients and mice, nests of CAFs were found in close contact with MM cells, suggesting a supportive niche. Therefore, the targeting of CAFs in MM patients may be envisaged as a novel therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Tlsty TD, Hein PW . Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev 2001; 11: 54–59.

    Article  CAS  Google Scholar 

  2. Li H, Fan X, Houghton J . Tumor microenvironment: the role of the tumor stroma in cancer. J Cell Biochem 2007; 101: 805–815.

    Article  CAS  Google Scholar 

  3. Orimo A, Weinberg RA . Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 2006; 5: 1597–1601.

    Article  CAS  Google Scholar 

  4. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    Article  CAS  Google Scholar 

  5. Franco OE, Shaw AK, Strand DW, Hayward SW . Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 2010; 21: 33–39.

    Article  CAS  Google Scholar 

  6. Shimoda M, Mellody KT, Orimo A . Carcinoma-associated fibroblasts are a rate-limiting determinant for tumor progression. Semin Cell Dev Biol 2010; 21: 19–25.

    Article  CAS  Google Scholar 

  7. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 Secretion. Cell 2005; 121: 335–348.

    Article  CAS  Google Scholar 

  8. Erez N, Truitt M, Olson P, Arron ST, Hanahan D . Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010; 17: 135–147.

    Article  CAS  Google Scholar 

  9. De Wever O, Demetter P, Mareel M, Bracke M . Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123: 2229–2238.

    Article  CAS  Google Scholar 

  10. Orimo A, Weinberg RA . Heterogeneity of stromal fibroblasts in tumors. Cancer Biol Ther 2007; 6: 618–619.

    Article  CAS  Google Scholar 

  11. Sugimoto H, Mundel TM, Kieran MW, Kalluri R . Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 2006; 5: 1640–1646.

    Article  CAS  Google Scholar 

  12. Anderberg C, Pietras K . On the origin of cancer-associated fibroblasts. Cell Cycle 2009; 8: 1461–1462.

    Article  CAS  Google Scholar 

  13. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G . The myofibroblasts: one function, multiple origins. Am J Pathol 2007; 170: 1807–1816.

    Article  CAS  Google Scholar 

  14. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP et al. Carcinoma-associated fibroblasts-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68: 4331–4339.

    Article  CAS  Google Scholar 

  15. Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D et al. Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 2004; 64: 8492–8495.

    Article  CAS  Google Scholar 

  16. Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R . Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 2007; 67: 10123–10128.

    Article  CAS  Google Scholar 

  17. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  Google Scholar 

  18. Hinz B, Gabbiani G . Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 2003; 14: 538–546.

    Article  CAS  Google Scholar 

  19. Tschumperlin DJ, Dai G, Maly IV, Kikuchi T, Laiho LH, McVittie AK et al. Mechanotransduction through growth-factor shedding into the extracellular space. Nature 2004; 429: 83–86.

    Article  CAS  Google Scholar 

  20. Kumar S, Weaver VM . Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 2009; 28: 113–127.

    Article  Google Scholar 

  21. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 2010; 107: 20009–20014.

    Article  CAS  Google Scholar 

  22. Ria R, Reale A, De Luisi A, Ferrucci A, Moschetta M, Vacca A . Bone marrow angiogenesis and progression in multiple myeloma. Am J Blood Res 2011; 1: 76–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Vacca A, Ribatti D . Bone marrow angiogenesis in multiple myeloma. Leukemia 2006; 20: 193–199.

    Article  CAS  Google Scholar 

  24. Basile A, Moschetta M, Ditonno P, Ria R, Marech I, De Luisi A et al. Pentraxin 3 (PTX3) inhibits plasma cell/stromal cell cross-talk in the bone marrow of multiple myeloma patients. J Pathol 2013; 229: 87–98.

    Article  CAS  Google Scholar 

  25. Berardi S, Caivano A, Ria R, Nico B, Savino R, Terracciano R et al. Four proteins governing overangiogenic endothelial cell phenotype in patients with multiple myeloma are plausible therapeutic targets. Oncogene 2012; 31: 2258–2269.

    Article  CAS  Google Scholar 

  26. Santos AM, Jung J, Aziz N, Kissil JL, Purè E . Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest 2009; 119: 3613–3625.

    Article  CAS  Google Scholar 

  27. Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM et al. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 2002; 46: 3349–3360.

    Article  Google Scholar 

  28. Ghobrial IM . Myeloma as a model for the process of metastasis: implications for therapy. Blood 2012; 120: 20–30.

    Article  CAS  Google Scholar 

  29. Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D et al. Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 2008; 14: 1678–1685.

    Article  CAS  Google Scholar 

  30. Xu S, Menu E, De Becker A, Van Camp B, Vanderkerken K, Van Riet I . Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells 2012; 30: 266–279.

    Article  CAS  Google Scholar 

  31. Möller C, Strömberg T, Juremalm M, Nilsson K, Nilsson G . Expression and function of chemokine receptors in human multiple myeloma. Leukemia 2003; 17: 203–210.

    Article  Google Scholar 

  32. Damiano JS, Dalton WS . Integrin-mediated drug resistance in multiple myeloma. Leuk Lymphoma 2000; 38: 71–81.

    Article  CAS  Google Scholar 

  33. Saito RA, Micke P, Paulsson J, Augsten M, Peña C, Jönsson P et al. Forkhead box F1 regulates tumor-promoting properties of cancer-associated fibroblasts in lung cancer. Cancer Res 2010; 70: 2644–2654.

    Article  CAS  Google Scholar 

  34. Ko SY, Barengo N, Ladanyi A, Lee JS, Marini F, Lengyel E et al. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J Clin Invest 2012; 122: 3603–3617.

    Article  CAS  Google Scholar 

  35. Östman A, Augsten M . Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr Opin Genet Dev 2009; 19: 67–73.

    Article  Google Scholar 

  36. Urashima M, Ogata A, Chauhan D, Hatziyanni M, Vidriales MB, Dedera DA et al. Transforming growth factor-beta1: differential effects on multiple myeloma versus normal B cells. Blood 1996; 87: 1928–1938.

    CAS  PubMed  Google Scholar 

  37. Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M et al. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res 2004; 10: 7540–7546.

    Article  CAS  Google Scholar 

  38. Markwald RR, Fitzharris TP, Smith WN . Sturctural analysis of endocardial cytodifferentiation. Dev Biol 1975; 42: 160–180.

    Article  CAS  Google Scholar 

  39. van Meeteren LA, ten Dijke P . Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res 2012; 347: 177–186.

    Article  CAS  Google Scholar 

  40. Moonen JR, Krenning G, Brinker MG, Koerts JA, van Luyn MJ, Harmsen MC . Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc Res 2010; 86: 506–515.

    Article  CAS  Google Scholar 

  41. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 2009; 4: e4992.

    Article  Google Scholar 

  42. Wang LH, Yang XY, Zhang X, Farrar WL . Inhibition of adhesive interaction between multiple myeloma and bone marrow stromal cells by PPARgamma cross talk with NF-kappaB and C/EBP. Blood 2007; 110: 4373–4384.

    Article  CAS  Google Scholar 

  43. Teoh G, Anderson KC . Interaction of tumor and host cells with adhesion and extracellular matrix molecules in the development of multiple myeloma. Hematol Oncol Clin North Am 1997; 11: 27–42.

    Article  CAS  Google Scholar 

  44. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A . The history of the angiogenic switch concept. Leukemia 2007; 21: 44–52.

    Article  CAS  Google Scholar 

  45. Damiano JS, Hazlehurst LA, Dalton WS . Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic mielogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia 2001; 15: 1232–1239.

    Article  CAS  Google Scholar 

  46. Damiano JS . Integrins as novel drug targets for overcoming innate drug resistance. Curr Cancer Drug Targets 2002; 2: 37–43.

    Article  CAS  Google Scholar 

  47. Nefedova Y, Landowski TH, Dalton WS . Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 2003; 17: 1175–1182.

    Article  CAS  Google Scholar 

  48. Vacca A, Ria R, Presta M, Ribatti D, Iurlaro M, Merchionne F et al. alpha(v)beta(3) integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp Hematol 2001; 29: 993–1003.

    Article  CAS  Google Scholar 

  49. van Riet I, de Greef C, del Favero H, Demanet C, Van Camp B . Production of fibronectin and adherence to fibronectin by human myeloma cell lines. Br J Haematol 1994; 87: 258–265.

    Article  CAS  Google Scholar 

  50. Tancred TM, Belch AR, Reiman T, Pilarski LM, Kirshner J . Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J Histochem Cytochem 2009; 57: 239–247.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K De Veirman (Vrije Universiteit Brussels) for help with the cytofluorimetric experiments in syngeneic 5T33 mice. This work was supported by the Associazione Italiana per la Ricerca sul Cancro (AIRC); an Investigator Grant (number 10099 to AV); the Special Program Molecular Clinical Oncology 5 per 1000 (number 9965 to AV), Milan; the European Commission’s Seventh Framework Programme (EU FPT7) OVER-MyR (number 278706 to AV and KV) and OPTATIO (number 278570 to DR); and the Ministry of Health (Progetto PRIN 2009 to RR and 2012 to AV), Rome, Italy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Vanderkerken or A Vacca.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frassanito, M., Rao, L., Moschetta, M. et al. Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: in vitro and in vivo studies. Leukemia 28, 904–916 (2014). https://doi.org/10.1038/leu.2013.254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.254

Keywords

This article is cited by

Search

Quick links