Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Chemical genomic screening identifies LY294002 as a modulator of glucocorticoid resistance in MLL-rearranged infant ALL

Abstract

Successful treatment results for MLL-rearranged Acute Lymphoblastic Leukemia (ALL) in infants remain difficult to achieve. Significantly contributing to therapy failure is poor response to glucocorticoids (GCs), like prednisone. Thus, overcoming resistance to these drugs may be a crucial step towards improving prognosis. We defined a gene signature that accurately discriminates between prednisolone-resistant and prednisolone-sensitive MLL-rearranged infant ALL patient samples. In the current study, we applied Connectivity Map analysis to perform an in silico screening for agents capable of reversing the prednisolone-resistance profile and induce sensitivity. These analyses revealed that LY294002, a PI3K inhibitor, would potentially fulfill this task. Subsequent validation experiments demonstrated that indeed LY294002, and other known PI3K inhibitors, markedly sensitized otherwise resistant MLL-rearranged ALL cells to prednisolone in vitro. Using quantitative RT-PCR analyses, we validated the modulating effects of the PI3K inhibitors on the expression of the genes present in our prednisolone-resistance profile. Interestingly, prednisolone-sensitizing actions may be mediated by inhibition of FCGR1B. Moreover, only high-level expression of FCGR1B showed to be predictive for a poor prognosis and shRNA-mediated knock-down of FCGR1B led to in vitro prednisolone sensitization. Thus, implementing FDA-approved PI3K inhibitors in current treatments may potentially improve the GC response and prognosis in patients with MLL-rearranged ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Greaves MF . Infant leukaemia biology, aetiology and treatment. Leukemia 1996; 10: 372–377.

    CAS  PubMed  Google Scholar 

  2. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    Article  CAS  PubMed  Google Scholar 

  3. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  4. Pieters R, den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJ et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia—implications for treatment of infants. Leukemia 1998; 12: 1344–1348.

    Article  CAS  PubMed  Google Scholar 

  5. Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94: 1209–1217.

    CAS  PubMed  Google Scholar 

  6. Frankel LS, Ochs J, Shuster JJ, Dubowy R, Bowman WP, Hockenberry-Eaton M et al. Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol Oncol 1997; 19: 35–42.

    Article  CAS  PubMed  Google Scholar 

  7. Reaman GH, Sposto R, Sensel MG, Lange BJ, Feusner JH, Heerema NA et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group. J Clin Oncol 1999; 17: 445–455.

    Article  CAS  PubMed  Google Scholar 

  8. Den Boer ML, Harms DO, Pieters R, Kazemier KM, Gobel U, Korholz D et al. Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 3262–3268.

    Article  CAS  PubMed  Google Scholar 

  9. Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997; 90: 2723–2729.

    CAS  PubMed  Google Scholar 

  10. Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351: 533–542.

    Article  CAS  PubMed  Google Scholar 

  11. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006; 10: 331–342.

    Article  CAS  PubMed  Google Scholar 

  12. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  13. Lamb J . The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7: 54–60.

    Article  CAS  PubMed  Google Scholar 

  14. Stam RW, Den Boer ML, Schneider P, de Boer J, Hagelstein J, Valsecchi MG et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood 2010; 115: 1018–1025.

    Article  CAS  PubMed  Google Scholar 

  15. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  16. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  17. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  PubMed  Google Scholar 

  18. Spijkers-Hagelstein JA, Mimoso Pinhancos S, Schneider P, Pieters R, Stam RW . Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 2012; 27: 1063–1071.

    Article  PubMed  Google Scholar 

  19. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  PubMed  Google Scholar 

  21. Berenbaum MC . Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp Immunol 1977; 28: 1–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramakers-van Woerden NL, Beverloo HB, Veerman AJ, Camitta BM, Loonen AH, van Wering ER et al. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia 2004; 18: 521–529.

    Article  CAS  PubMed  Google Scholar 

  23. Kong D, Yamori T . Phosphatidylinositol 3-kinase inhibitors: promising drug candidates for cancer therapy. Cancer Sci 2008; 99: 1734–1740.

    Article  CAS  PubMed  Google Scholar 

  24. Workman P, Clarke PA, Raynaud FI, van Montfort RL . Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res 2010; 70: 2146–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Munoz L, Nomdedeu JF, Villamor N, Guardia R, Colomer D, Ribera JM et al. Acute myeloid leukemia with MLL rearrangements: clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia 2003; 17: 76–82.

    Article  CAS  PubMed  Google Scholar 

  26. Tur MK, Huhn M, Thepen T, Stocker M, Krohn R, Vogel S et al. Recombinant CD64-specific single chain immunotoxin exhibits specific cytotoxicity against acute myeloid leukemia cells. Cancer Res 2003; 63: 8414–8419.

    CAS  PubMed  Google Scholar 

  27. Zhong RK, van de Winkel JG, Thepen T, Schultz LD . Ball ED Cytotoxicity of anti-CD64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in SCID mice. J Hematother Stem Cell Res 2001; 10: 95–105.

    Article  CAS  PubMed  Google Scholar 

  28. Marley SB, Lewis JL, Schneider H, Rudd CE, Gordon MY . Phosphatidylinositol-3 kinase inhibitors reproduce the selective antiproliferative effects of imatinib on chronic myeloid leukaemia progenitor cells. Br J Haematol 2004; 125: 500–511.

    Article  CAS  PubMed  Google Scholar 

  29. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  30. Edwards H, Xie C, LaFiura KM, Dombkowski AA, Buck SA, Boerner JL et al. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 2009; 114: 2744–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res 2003; 1: 234–246.

    CAS  PubMed  Google Scholar 

  32. Tabellini G, Cappellini A, Tazzari PL, Fala F, Billi AM, Manzoli L et al. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 2005; 202: 623–634.

    Article  CAS  PubMed  Google Scholar 

  33. O'Gorman DM, McKenna SL, McGahon AJ, Knox KA, Cotter TG. . Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals. Leukemia 2000; 14: 14602–14611.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank all the members and participating hospitals of the INTERFANT-99 study groups for supporting our research by generously providing leukemic samples. This study was funded by KIKA (stichting KinderenKankervrij) (JAPS-H). RWS was financially supported by the Dutch Cancer Society (KWF Kankerbestrijding). The institutions funding this research did not participate in study design, data collection, data analysis, data interpretation or writing of the report. All authors had full access to all the data at all time and shared final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R W Stam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

JAPS-H designed and performed research and wrote the paper; SSP and PS performed research; RP and RWS designed and supervised research, wrote and reviewed the paper.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijkers-Hagelstein, J., Pinhanços, S., Schneider, P. et al. Chemical genomic screening identifies LY294002 as a modulator of glucocorticoid resistance in MLL-rearranged infant ALL. Leukemia 28, 761–769 (2014). https://doi.org/10.1038/leu.2013.245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.245

Keywords

This article is cited by

Search

Quick links