Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system

Abstract

Owing to their clinical success, there is growing interest in novel bispecific antibodies (bsAbs) for retargeting of T cells to tumor cells including for the treatment of acute myeloid leukemia (AML). One potential target for retargeting of T cells to AML blasts is the surface molecule CD33. Here we describe a novel modular targeting platform that consists of a universal effector module (EM) and individual target modules (TMs). Both modules can form an immune complex via a peptide epitope. The resulting targeting complex can functionally replace a conventional bsAb. By fusion of a costimulatory domain (for example, the extracellular CD137 ligand domain) to the TM, the targeting complex can even provide a costimulatory signal to the redirected T cells at their side of interaction with the tumor cell. Furthermore, we observed that an efficient killing of tumor cells expressing low levels of the tumor target CD33 becomes critical at low effector-to-target cell ratios but can be improved by costimulation via CD137 using our novel targeting system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Müller D, Kontermann RE . Bispecific antibodies for cancer immunotherapy: current perspectives. BioDrugs 2010; 24: 89–98.

    Article  PubMed  Google Scholar 

  2. Stamova S, Koristka S, Keil J, Arndt C, Feldmann A, Michalk I et al. Cancer immunotherapy by retargeting of immune effector cells via recombinant bispecific antibody constructs. Antibodies 2012; 1: 172–198.

    Article  CAS  Google Scholar 

  3. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005; 115: 98–104.

    Article  CAS  PubMed  Google Scholar 

  4. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA . Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol 2006; 43: 763–771.

    Article  CAS  PubMed  Google Scholar 

  5. Stamova S, Feldmann A, Cartellieri M, Arndt C, Koristka S, Apel F et al. Generation of single-chain bispecific green fluorescent protein fusion antibodies for imaging of antibody-induced T cell synapses. Anal Biochem 2012; 423: 261–268.

    Article  CAS  PubMed  Google Scholar 

  6. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008; 321: 974–977.

    Article  CAS  PubMed  Google Scholar 

  7. Nagorsen D, Baeuerle PA . Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res 2011; 317: 1255–1260.

    Article  CAS  PubMed  Google Scholar 

  8. Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011; 29: 2493–2498.

    Article  CAS  PubMed  Google Scholar 

  9. Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood 2012; 119: 6226–6233.

    Article  CAS  PubMed  Google Scholar 

  10. Feldmann A, Stamova S, Bippes CC, Bartsch H, Wehner R, Schmitz M et al. Retargeting of T cells to prostate stem cell antigen expressing tumor cells: comparison of different antibody formats. Prostate 2011; 71: 998–1011.

    Article  CAS  PubMed  Google Scholar 

  11. Robak T, Wierzbowska A . Current and emerging therapies for acute myeloid leukemia. Clin Ther 2009; 31: 2349–2370.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong RK, Lane TA, Ball ED . Generation of T-cell lines to autologous acute myeloid leukemia cells by competitive limiting dilution culture of acute myeloid leukemia mononuclear cells. Exp Hematol 2008; 36: 486–494.

    Article  CAS  PubMed  Google Scholar 

  13. Draube A, Beyer M, Wolf J . Activation of autologous leukemia-specific T cells in acute myeloid leukemia: monocyte-derived dendritic cells cocultured with leukemic blasts compared with leukemia-derived dendritic cells. Eur J Haematol 2008; 81: 281–288.

    Article  PubMed  Google Scholar 

  14. Rezvani K, Yong AS, Tawab A, Jafarpour B, Eniafe R, Mielke S et al. Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 2009; 113: 2245–2255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bornhäuser M, Thiede C, Platzbecker U, Kiani A, Oelschlaegel U, Babatz J et al. Prophylactic transfer of BCR-ABL-, PR1-, and WT1-reactive donor T cells after T cell-depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia. Blood 2011; 117: 7174–7184.

    Article  PubMed  Google Scholar 

  16. Stamova S, Cartellieri M, Feldmann A, Bippes CC, Bartsch H, Wehner R et al. Simultaneous engagement of the activatory receptors NKG2D and CD3 for retargeting of effector cells to CD33-positive malignant cells. Leukemia 2011; 25: 1053–1056.

    Article  CAS  PubMed  Google Scholar 

  17. Aigner M, Feulner J, Schaffer S, Kischel R, Kufer P, Schneider K et al. T lymphocytes can be effectively recruited for ex vivo and in vivo lysis of AML blasts by a novel CD33/CD3-bispecific BiTE antibody construct. Leukemia 2013; 27: 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  18. Arndt C, von Bonin M, Cartellieri M, Feldmann A, Koristka S, Michalk I et al. Redirection of T cells with a first fully humanized bispecific CD33-CD3 antibody efficiently eliminates AML blasts without harming hematopoietic stem cells. Leukemia 2013; 27: 964–967.

    Article  CAS  PubMed  Google Scholar 

  19. Dinndorf PA, Andrews RG, Benjamin D, Ridgway D, Wolff L, Bernstein ID . Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 1986; 67: 1048–1053.

    CAS  PubMed  Google Scholar 

  20. Legrand O, Perrot JY, Baudard M, Cordier A, Lautier R, Simonin G et al. The immunophenotype of 177 adults with acute myeloid leukemia: proposal of a prognostic score. Blood 2000; 96: 870–877.

    CAS  PubMed  Google Scholar 

  21. Feldmann A, Arndt C, Töpfer K, Stamova S, Krone F, Cartellieri M et al. Novel humanized and highly efficient bispecific antibodies mediate killing of prostate stem cell antigen-expressing tumor cells by CD8+ and CD4+ T cells. J Immunol 2012; 189: 3249–3259.

    Article  CAS  PubMed  Google Scholar 

  22. Stamova S, Cartellieri M, Feldmann A, Arndt C, Koristka S, Bartsch H et al. Unexpected recombinations in single chain bispecific anti-CD3-anti-CD33 antibodies can be avoided by a novel linker module. Mol Immunol 2011; 49: 474–482.

    Article  CAS  PubMed  Google Scholar 

  23. Koristka S, Cartellieri M, Arndt C, Bippes CC, Feldmann A, Michalk I et al. Retargeting of regulatory T cells to surface-inducible autoantigen La/SS-B. J Autoimmun 2013; 42: 105–116.

    Article  CAS  PubMed  Google Scholar 

  24. Koristka S, Cartellieri M, Theil A, Feldmann A, Arndt C, Stamova S et al. Retargeting of human regulatory T cells by single-chain bispecific antibodies. J Immunol 2012; 188: 1551–1558.

    Article  CAS  PubMed  Google Scholar 

  25. Carmo-Fonseca M, Pfeifer K, Schröder HC, Vaz MF, Fonseca JE, Müller WE et al. Identification of La ribonucleoproteins as a component of interchromatin granules. Exp Cell Res 1989; 185: 73–85.

    Article  CAS  PubMed  Google Scholar 

  26. Dreier T, Baeuerle PA, Fichtner I, Grün M, Schlereth B, Lorenczewski G et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol 2003; 170: 4397–4402.

    Article  CAS  PubMed  Google Scholar 

  27. Schlereth B, Quadt C, Dreier T, Kufer P, Lorenczewski G, Prang N et al. T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol Immunother 2006; 55: 503–514.

    Article  CAS  PubMed  Google Scholar 

  28. Lutterbuese R, Raum T, Kischel R, Lutterbuese P, Schlereth B, Schaller E et al. Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J Immunother 2009; 32: 341–352.

    Article  CAS  PubMed  Google Scholar 

  29. Amann M, D'Argouges S, Lorenczewski G, Brischwein K, Kischel R, Lutterbuese R et al. Antitumor activity of an EpCAM/CD3-bispecific BiTE antibody during long-term treatment of mice in the absence of T-cell anergy and sustained cytokine release. J Immunother 2009; 32: 452–464.

    Article  CAS  PubMed  Google Scholar 

  30. Fortmüller K, Alt K, Gierschner D, Wolf P, Baum V, Freudenberg N et al. Effective targeting of prostate cancer by lymphocytes redirected by a PSMA × CD3 bispecific single-chain diabody. Prostate 2011; 71: 588–596.

    Article  PubMed  Google Scholar 

  31. Berthon C, Driss V, Liu J, Kuranda K, Leleu X, Jouy N et al. In acute myeloid leukemia, B7-H1 (PD-L1) protection of blasts from cytotoxic T cells is induced by TLR ligands and interferon-gamma and can be reversed using MEK inhibitors. Cancer Immunol Immunother 2010; 59: 1839–1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma Q, Wang C, Jones D, Quintanilla KE, Li D, Wang Y et al. Adoptive transfer of PR1 cytotoxic T lymphocytes associated with reduced leukemia burden in a mouse acute myeloid leukemia xenograft model. Cytotherapy 2010; 12: 1056–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hornig N, Kermer V, Frey K, Diebolder P, Kontermann RE, Müller D . Combination of a bispecific antibody and costimulatory antibody-ligand fusion proteins for targeted cancer immunotherapy. J Immunother 2012; 35: 418–429.

    Article  CAS  PubMed  Google Scholar 

  34. Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP . Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett 2006; 236: 229–238.

    Article  CAS  PubMed  Google Scholar 

  35. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M . Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol 2013; 31: 71–75.

    Article  CAS  PubMed  Google Scholar 

  36. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002; 100: 690–697.

    Article  CAS  PubMed  Google Scholar 

  37. Haas C, Krinner E, Brischwein K, Hoffmann P, Lutterbüse R, Schlereth B et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology 2009; 214: 441–453.

    Article  CAS  PubMed  Google Scholar 

  38. Holliger P, Hudson PJ . Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23: 1126–1136.

    Article  CAS  PubMed  Google Scholar 

  39. Yokota T, Milenic DE, Whitlow M, Schlom J . Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52: 3402–3408.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Livia Schulze, Kristin Heidel, Barbara Uteß and Christine Gräfe for their excellent technical assistance; Professor Dr Dirk Lindemann for providing us with the lentiviral vector system; and Professor Dr Christian Thiede for providing the CD33+ cell lines MOLM-13, MV4-11 and OCI-AML3. This study was supported by a grant of the Medical faculty of the Technical University Dresden to Marc Cartellieri, a seed grant by the Center for Regenerative Therapies Dresden (CRTD), Technical University Dresden, and the José Carreras Stiftung to Michael Bachmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bachmann.

Ethics declarations

Competing interests

MB, SS and GE have filed provisional patent application related to the antibodies directed to CD33 and La.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndt, C., Feldmann, A., von Bonin, M. et al. Costimulation improves the killing capability of T cells redirected to tumor cells expressing low levels of CD33: description of a novel modular targeting system. Leukemia 28, 59–69 (2014). https://doi.org/10.1038/leu.2013.243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.243

Keywords

This article is cited by

Search

Quick links