Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Spotlight on Clonal Evolution in Leukemias

An evolutionary perspective on chronic myelomonocytic leukemia

Abstract

Chronic myelomonocytic leukemia (CMML) shares with other myeloid diseases a number of somatic gene mutations. These mutations can now be integrated within the framework of evolution theory to address the mechanisms of the disease. Several evidences indicate that the disease emerges in adult hematopoietic stem cells (HSC) through the age-dependent accumulation of DNA damage, leading stochastically to a driver mutation that confers a competitive advantage to the cell. A mutation in TET2 gene could be one of these driver mutations provoking the emergence of clonality. After a long latency, secondary lesions, such as mutations in the SRSF2 gene, contribute to progression to full-blown malignancy, with abnormal differentiation. Additional mutations accumulate and branching arising mostly through mitotic recombination generates clonal heterogeneity. Modifications in the microenvironment probably affect this clonal dynamics, whereas epigenetic alterations, such as hypermethylation of the TIF1γ gene promoter, may generate phenotypic diversification of otherwise clonal populations. The preserved although deregulated myeloid differentiation that characterizes CMML, with granulomonocyte expansion and various cytopenias, may depend on early clonal dominance in the hematopietic cell hierarchy. Progression to acute myeloid leukemia observed in 25–30% of the patients may arise from the massive expansion of a clone with novel genetic lesions, providing a high fitness to previously minor subclones when in chronic phase of the disease. This review discusses the various models of disease emergence and progression and how this recent knowledge could drive rational therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Orazi A, Germing U . The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia 2008; 22: 1308–1319.

    CAS  PubMed  Google Scholar 

  2. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    CAS  PubMed  Google Scholar 

  3. Tefferi A . Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 2010; 24: 1128–1138.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA . New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 118: 1723–1735.

    CAS  PubMed  Google Scholar 

  5. Itzykson R, Droin N, Solary E . Current insights in the cellular and molecular biology of chronic myelomonocytic leukemia. Int J Hematol Oncol 2012; 1: 147–158.

    CAS  Google Scholar 

  6. Abdel-Wahab O, Dey A . The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics. Leukemia 2013; 27: 10–15.

    CAS  PubMed  Google Scholar 

  7. Nowell PC . The clonal evolution of tumor cell populations. Science 1976; 194: 23–28.

    CAS  PubMed  Google Scholar 

  8. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yates LR, Campbell PJ . Evolution of the cancer genome. Nat Rev Genet 2012; 13: 795–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bendall SC, Nolan GP . From single cells to deep phenotypes in cancer. Nat Biotechnol 2012; 30: 639–647.

    CAS  PubMed  Google Scholar 

  11. Dick JE . Stem cell concepts renew cancer research. Blood 2008; 112: 4793–4807.

    CAS  PubMed  Google Scholar 

  12. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    CAS  PubMed  Google Scholar 

  15. Clappier E, Gerby B, Sigaux F, Delord M, Touzri F, Hernandez L et al. Clonal selection in xenografted human T cell acute lymphoblastic leukemia recapitulates gain of malignancy at relapse. J Exp Med 2011; 208: 653–661.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Turner NC, Reis-Filho JS . Genetic heterogeneity and cancer drug resistance. Lancet Oncol 2012; 13: e178–e185.

    PubMed  Google Scholar 

  17. Marusyk A, Almendro V, Polyak K . Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer 2012; 12: 323–334.

    CAS  PubMed  Google Scholar 

  18. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    CAS  PubMed  Google Scholar 

  19. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Such E, Cervera J, Costa D, Sole F, Vallespi T, Luno E et al. Cytogenetic risk stratification in chronic myelomonocytic leukemia. Haematologica 2011; 96: 375–383.

    PubMed  Google Scholar 

  21. Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H et al. 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008; 68: 10349–10357.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tessema M, Langer F, Dingemann J, Ganser A, Kreipe H, Lehmann U . Aberrant methylation and impaired expression of the p15(INK4b) cell cycle regulatory gene in chronic myelomonocytic leukemia (CMML). Leukemia 2003; 17: 910–918.

    CAS  PubMed  Google Scholar 

  23. Aucagne R, Droin N, Paggetti J, Lagrange B, Largeot A, Hammann A et al. Transcription intermediary factor 1gamma is a tumor suppressor in mouse and human chronic myelomonocytic leukemia. J Clin Invest 2011; 121: 2361–2370.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez C, Martinez-Calle N, Martin-Subero JI, Segura V, Delabesse E, Fernandez-Mercado M et al. TET2 mutations are associated with specific 5-methylcytosine and 5-hydroxymethylcytosine profiles in patients with chronic myelomonocytic leukemia. PLoS One 2012; 7: e31605.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C et al. Clonal architecture of chronic myelomonocytic leukemias. Blood 2013; 121: 2186–2198.

    CAS  PubMed  Google Scholar 

  26. Nilsson L, Astrand-Grundstrom I, Arvidsson I, Jacobsson B, Hellstrom-Lindberg E, Hast R et al. Isolation and characterization of hematopoietic progenitor/stem cells in 5q-deleted myelodysplastic syndromes: evidence for involvement at the hematopoietic stem cell level. Blood 2000; 96: 2012–2021.

    CAS  PubMed  Google Scholar 

  27. James C, Mazurier F, Dupont S, Chaligne R, Lamrissi-Garcia I, Tulliez M et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood 2008; 112: 2429–2438.

    CAS  PubMed  Google Scholar 

  28. Thanopoulou E, Cashman J, Kakagianne T, Eaves A, Zoumbos N, Eaves C . Engraftment of NOD/SCID-beta2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood 2004; 103: 4285–4293.

    CAS  PubMed  Google Scholar 

  29. Delhommeau F, Dupont S, Tonetti C, Masse A, Godin I, Le Couedic JP et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood 2007; 109: 71–77.

    CAS  PubMed  Google Scholar 

  30. Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gaken J, Lea NC et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 2010; 116: 3923–3932.

    CAS  PubMed  Google Scholar 

  31. Goardon N, Marchi E, Atzberger A, Quek L, Schuh A, Soneji S et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138–152.

    CAS  PubMed  Google Scholar 

  32. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  33. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Muller-Sieburg CE, Sieburg HB, Bernitz JM, Cattarossi G . Stem cell heterogeneity: implications for aging and regenerative medicine. Blood 2012; 119: 3900–3907.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Henry CJ, Marusyk A, DeGregori J . Aging-associated changes in hematopoiesis and leukemogenesis: what’s the connection? Aging (Albany NY) 2011; 3: 643–656.

    CAS  Google Scholar 

  36. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7: 391–402.

    CAS  PubMed  Google Scholar 

  37. Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 2012; 148: 1001–1014.

    CAS  PubMed  Google Scholar 

  38. Milyavsky M, Gan OI, Trottier M, Komosa M, Tabach O, Notta F et al. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 2010; 7: 186–197.

    CAS  PubMed  Google Scholar 

  39. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443: 421–426.

    CAS  PubMed  Google Scholar 

  40. Bondar T, Medzhitov R . p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 2010; 6: 309–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rube CE, Fricke A, Widmann TA, Furst T, Madry H, Pfreundschuh M et al. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 2011; 6: e17487.

    PubMed  PubMed Central  Google Scholar 

  42. Calado RT, Young NS . Telomere maintenance and human bone marrow failure. Blood 2008; 111: 4446–4455.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144: 27–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Catlin SN, Busque L, Gale RE, Guttorp P, Abkowitz JL . The replication rate of human hematopoietic stem cells in vivo. Blood 2011; 117: 4460–4466.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vickers MA . JAK2 617V>F positive polycythemia rubra vera maintained by approximately 18 stochastic stem-cell divisions per year, explaining age of onset by a single rate-limiting mutation. Blood 2007; 110: 1675–1680.

    CAS  PubMed  Google Scholar 

  46. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA . Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2008; 322: 1861–1865.

    CAS  PubMed  Google Scholar 

  47. Meggendorfer M, Roller A, Haferlach T, Eder C, Dicker F, Grossmann V et al. SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood 2012; 120: 3080–3088.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jankowska AM, Makishima H, Tiu RV, Szpurka H, Huang Y, Traina F et al. Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. Blood 2011; 118: 3932–3941.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pronier E, Almire C, Mokrani H, Vasanthakumar A, Simon A, da Costa Reis Monte Mor B et al. Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 2011; 118: 2551–2555.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Quivoron C, Couronne L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 2011; 20: 25–38.

    CAS  PubMed  Google Scholar 

  51. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 2011; 20: 11–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    PubMed  Google Scholar 

  53. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 2012; 4: 149ra118.

    PubMed  PubMed Central  Google Scholar 

  54. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44: 1179–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Shiba N, Hasegawa D, Park MJ, Murata C, Sato-Otsubo A, Ogawa C et al. CBL mutation in chronic myelomonocytic leukemia secondary to familial platelet disorder with propensity to develop acute myeloid leukemia (FPD/AML). Blood 2012; 119: 2612–2614.

    CAS  PubMed  Google Scholar 

  57. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell 2012; 22: 180–193.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 2010; 107: 18545–18550.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Muller-Schmah C, Solari L, Weis R, Pfeifer D, Scheibenbogen C, Trepel M et al. Immune response as a possible mechanism of long-lasting disease control in spontaneous remission of MLL/AF9-positive acute myeloid leukemia. Ann Hematol 2012; 91: 27–32.

    PubMed  Google Scholar 

  60. Muramatsu H, Makishima H, Jankowska AM, Cazzolli H, O'Keefe C, Yoshida N et al. Mutations of an E3 ubiquitin ligase c-Cbl but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 115: 1969–75.

    PubMed  Google Scholar 

  61. Stein BL, Williams DM, Rogers O, Isaacs MA, Spivak JL, Moliterno AR . Disease burden at the progenitor level is a feature of primary myelofibrosis: a multivariable analysis of 164 JAK2 V617F-positive myeloproliferative neoplasm patients. Exp Hematol 2011; 39: 95–101.

    CAS  PubMed  Google Scholar 

  62. Dingli D, Pacheco JM . Stochastic dynamics and the evolution of mutations in stem cells. BMC Biol 2011; 9: 41.

    PubMed  PubMed Central  Google Scholar 

  63. Velicer GJ, Kroos L, Lenski RE . Developmental cheating in the social bacterium Myxococcus xanthus. Nature 2000; 404: 598–601.

    CAS  PubMed  Google Scholar 

  64. Nakatake M, Monte-Mor B, Debili N, Casadevall N, Ribrag V, Solary E et al. JAK2(V617F) negatively regulates p53 stabilization by enhancing MDM2 via La expression in myeloproliferative neoplasms. Oncogene 2012; 31: 1323–1333.

    CAS  PubMed  Google Scholar 

  65. Sallmyr A, Fan J, Rassool FV . Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 2008; 270: 1–9.

    CAS  PubMed  Google Scholar 

  66. Ashworth A, Lord CJ, Reis-Filho JS . Genetic interactions in cancer progression and treatment. Cell 2011; 145: 30–38.

    CAS  PubMed  Google Scholar 

  67. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Damm F, Kosmider O, Gelsi-Boyer V, Renneville A, Carbuccia N, Hidalgo-Curtis C et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 2012; 119: 3211–3218.

    CAS  PubMed  Google Scholar 

  69. Li Q, Haigis KM, McDaniel A, Harding-Theobald E, Kogan SC, Akagi K et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood 2011; 117: 2022–2032.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M et al. Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells 2007; 25: 2976–2986.

    CAS  PubMed  Google Scholar 

  71. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 2012; 148: 873–885.

    CAS  PubMed  Google Scholar 

  72. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al. Tumour evolution inferred by single-cell sequencing. Nature 2011; 472: 90–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lasho TL, Tefferi A, Finke C, Pardanani A . Clonal hierarchy and allelic mutation segregation in a myelofibrosis patient with two distinct LNK mutations. Leukemia 2011; 25: 1056–1058.

    CAS  PubMed  Google Scholar 

  74. Rozenblatt-Rosen O, Deo RC, Padi M, Adelmant G, Calderwood MA, Rolland T et al. Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature 2012; 487: 491–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Arias AM, Hayward P . Filtering transcriptional noise during development: concepts and mechanisms. Nat Rev Genet 2006; 7: 34–44.

    CAS  PubMed  Google Scholar 

  76. Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 2010; 24: 1731–1745.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wu M, Pastor-Pareja JC, Xu T . Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 2010; 463: 545–548.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sottoriva A, Vermeulen L, Tavare S . Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 2011; 7: e1001132.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Anderson AR, Weaver AM, Cummings PT, Quaranta V . Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 2006; 127: 905–915.

    CAS  PubMed  Google Scholar 

  80. Rupec RA, Jundt F, Rebholz B, Eckelt B, Weindl G, Herzinger T et al. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Immunity 2005; 22: 479–491.

    CAS  PubMed  Google Scholar 

  81. Vas V, Wandhoff C, Dorr K, Niebel A, Geiger H . Contribution of an aged microenvironment to aging-associated myeloproliferative disease. PLoS One 2012; 7: e31523.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kristinsson SY, Bjorkholm M, Hultcrantz M, Derolf AR, Landgren O, Goldin LR . Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J Clin Oncol 2011; 29: 2897–2903.

    PubMed  PubMed Central  Google Scholar 

  83. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG . Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 2011; 208: 273–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kohler A, Schmithorst V, Filippi MD, Ryan MA, Daria D, Gunzer M et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114: 290–298.

    PubMed  PubMed Central  Google Scholar 

  85. Fleischman AG, Aichberger KJ, Luty SB, Bumm TG, Petersen CL, Doratotaj S et al. TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 2011; 118: 6392–6398.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Marcondes AM, Mhyre AJ, Stirewalt DL, Kim SH, Dinarello CA, Deeg HJ . Dysregulation of IL-32 in myelodysplastic syndrome and chronic myelomonocytic leukemia modulates apoptosis and impairs NK function. Proc Natl Acad Sci USA 2008; 105: 2865–2870.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Siegmund KD, Marjoram P, Woo YJ, Tavare S, Shibata D . Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc Natl Acad Sci USA 2009; 106: 4828–4833.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu F, Zhao X, Perna F, Wang L, Koppikar P, Abdel-Wahab O et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell 2011; 19: 283–294.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Will B, Zhou L, Vogler TO, Ben-Neriah S, Schinke C, Tamari R et al. Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations. Blood 2012; 120: 2076–2086.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pina C, Fugazza C, Tipping AJ, Brown J, Soneji S, Teles J et al. Inferring rules of lineage commitment in haematopoiesis. Nat Cell Biol 2012; 14: 287–294.

    CAS  PubMed  Google Scholar 

  91. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011; 146: 633–644.

    CAS  PubMed  Google Scholar 

  92. Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA . Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 2007; 5: e201.

    PubMed  PubMed Central  Google Scholar 

  93. Dupont S, Masse A, James C, Teyssandier I, Lecluse Y, Larbret F et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood 2007; 110: 1013–1021.

    CAS  PubMed  Google Scholar 

  94. Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA, Bench A et al. Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood 2011; 118: 177–181.

    CAS  PubMed  Google Scholar 

  95. Swierczek SI, Yoon D, Bellanne-Chantelot C, Kim SJ, Saint-Martin C, Delhommeau F et al. Extent of hematopoietic involvement by TET2 mutations in JAK2V(6)(1)(7)F polycythemia vera. Haematologica 2011; 96: 775–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood 2012; 120: 3173–3186.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen E, Beer PA, Godfrey AL, Ortmann CA, Li J, Costa-Pereira AP et al. Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell 2010; 18: 524–535.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Itzykson R, Kosmider O, Renneville A, Morabito M, Buet D, Preudhomme C et al. Two distinct mechanisms contribute to granulomonocytic hyperplasia in chronic myelomonocytic leukemias (CMML). ASH Ann Meet Abstr 2012; 120: 309.

    Google Scholar 

  99. Ricci C, Fermo E, Corti S, Molteni M, Faricciotti A, Cortelezzi A et al. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant. Clin Cancer Res 2010; 16: 2246–2256.

    CAS  PubMed  Google Scholar 

  100. Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M et al. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103: 6224–6229.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L et al. MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 2009; 138: 300–313.

    CAS  PubMed  Google Scholar 

  102. Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T . Hematopoietic cytokines can instruct lineage choice. Science 2009; 325: 217–218.

    CAS  PubMed  Google Scholar 

  103. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011; 20: 661–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ballerini P, Struski S, Cresson C, Prade N, Toujani S, Deswarte C et al. RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation. Leukemia 2012; 26: 2384–2389.

    CAS  PubMed  Google Scholar 

  106. Emanuel PD . Juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia. Leukemia 2008; 22: 1335–1342.

    CAS  PubMed  Google Scholar 

  107. Loh ML . Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol 2011; 152: 677–687.

    CAS  PubMed  Google Scholar 

  108. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A . DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 2011; 25: 1219–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood 2010; 115: 2891–2900.

    CAS  PubMed  Google Scholar 

  110. Itzykson R, Kosmider O, Renneville A., Gelsi-Boyer V, Meggendorfer M, Morabito M et al. A prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol 2013; in press.

  111. Gelsi-Boyer V, Trouplin V, Roquain J, Adelaide J, Carbuccia N, Esterni B et al. ASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemia. Br J Haematol 2010; 151: 365–375.

    CAS  PubMed  Google Scholar 

  112. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood 2013; 121: 3005–3015.

    CAS  PubMed  Google Scholar 

  113. Cheng H, Kirtani VG, Gergis U . Current status of allogeneic HST for chronic myelomonocytic leukemia. Bone Marrow Transplant 2012; 47: 535–541.

    CAS  PubMed  Google Scholar 

  114. Braun T, Itzykson R, Renneville A, de Renzis B, Dreyfus F, Laribi K et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood 2011; 118: 3824–3831.

    CAS  PubMed  Google Scholar 

  115. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lyubynska N, Gorman MF, Lauchle JO, Hong WX, Akutagawa JK, Shannon K et al. A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice. Sci Transl Med 2011; 3: 76ra27.

    PubMed  PubMed Central  Google Scholar 

  117. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009; 10: 223–232.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010; 467: 338–342.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to William Vainchenker and Olivier Bernard for insightful discussions. We apologize to several other authors contributing to the field of myeloid neoplasms or clonal evolution of cancer whose work could not be cited due to space restrictions. This research is supported by grants from the Ligue Nationale Contre le Cancer (Label, ES), and the French National Cancer Institute (PHRC 2011 to ES and support to RI). UMR1009 is supported by the ARC Foundation and the Région Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Solary.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itzykson, R., Solary, E. An evolutionary perspective on chronic myelomonocytic leukemia. Leukemia 27, 1441–1450 (2013). https://doi.org/10.1038/leu.2013.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.100

Keywords

This article is cited by

Search

Quick links