Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Mast cells promote the growth of Hodgkin's lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib

Abstract

Hodgkin's lymphoma is frequently associated with mast cell infiltration that correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear. Here, we report that mast cells promote the growth of Hodgkin's tumor by modifying the tumor microenvironment. A transplantation assay shows that primary murine mast cells accelerate tumor growth by established Hodgkin's cell lines, and promote marked neovascularization and fibrosis. Both mast cells and Hodgkin's cells were sensitive to bortezomib, but mast cells were more resistant to bortezomib. However, bortezomib inhibited degranulation, PGE2-induced rapid release of CCL2, and continuous release of vascular endothelial growth factor-A from mast cells even at the concentration that did not induce cell death. Bortezomib-treated mast cells lost the ability to induce neovasculization and fibrosis, and did not promote the growth of Hodgkin tumor in vivo. These results provide further evidence supporting causal relationships between inflammation and tumor growth, and demonstrate that bortezomib can target the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Balkwill F, Mantovani A . Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539–545.

    Article  CAS  PubMed  Google Scholar 

  2. Coussens LM, Werb Z . Inflammation and cancer. Nature 2002; 420: 860–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lennard-Jones JE, Melville DM, Morson BC, Ritchie JK, Williams CB . Precancer and cancer in extensive ulcerative colitis: findings among 401 patients over 22 years. Gut 1990; 31: 800–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ernst PB, Pappo J . Preventive and therapeutic vaccines against Helicobacter pylori: current status and future challenges. Curr Pharm Des 2000; 6: 1557–1573.

    Article  CAS  PubMed  Google Scholar 

  5. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, Kitamura T et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328: 1797–1801.

    Article  CAS  PubMed  Google Scholar 

  6. Westphal JR . Uber mastzellen. Farbenalytische Untersuchungen 1891, 17–41.

  7. Kessler DA, Langer RS, Pless NA, Folkman J . Mast cells and tumor angiogenesis. Int J Cancer 1976; 18: 703–709.

    Article  CAS  PubMed  Google Scholar 

  8. Ribatti D, Vacca A, Nico B, Crivellato E, Roncali L, Dammacco F . The role of mast cells in tumour angiogenesis. Br J Haematol 2001; 115: 514–521.

    Article  CAS  PubMed  Google Scholar 

  9. Canioni D, Deau-Fischer B, Taupin P, Ribrag V, Delarue R, Bosq J et al. Prognostic significance of new immunohistochemical markers in refractory classical Hodgkin lymphoma: a study of 59 cases. PloS One 2009; 4: e6341.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Molin D, Edstrom A, Glimelius I, Glimelius B, Nilsson G, Sundstrom C et al. Mast cell infiltration correlates with poor prognosis in Hodgkin's lymphoma. Br J Haematol 2002; 119: 122–124.

    Article  PubMed  Google Scholar 

  11. Molin D . Bystander cells and prognosis in Hodgkin lymphoma. Review based on a doctoral thesis. Ups J Med Sci 2004; 109: 179–228.

    Article  PubMed  Google Scholar 

  12. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG . Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045–2056.

    CAS  PubMed  Google Scholar 

  13. Arpinati M, Chirumbolo G, Nicolini B, Agostinelli C, Rondelli D . Selective apoptosis of monocytes and monocyte-derived DCs induced by bortezomib (Velcade). Bone Marrow Transplant 2009; 43: 253–259.

    Article  CAS  PubMed  Google Scholar 

  14. Sun K, Li M, Sayers TJ, Welniak LA, Murphy WJ . Differential effects of donor T-cell cytokines on outcome with continuous bortezomib administration after allogeneic bone marrow transplantation. Blood 2008; 112: 1522–1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masuda A, Matsuguchi T, Yamaki K, Hayakawa T, Yoshikai Y . Interleukin-15 prevents mouse mast cell apoptosis through STAT6- mediated Bcl-xL expression. J Biol Chem 2001; 276: 26107–26113.

    Article  CAS  PubMed  Google Scholar 

  16. Yuan QG, Gurish MF, Friend DS, Austen KF, Boyce JA . Generation of a novel stem cell factor-dependent mast cell progenitor. J Immunol 1998; 161: 5143.

    CAS  PubMed  Google Scholar 

  17. Saito S, Nakayama T, Hashimoto N, Miyata Y, Egashira K, Nakao N et al. Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuate bleomycin-induced lung damage. Am J Pathol 2011; 179: 1088–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomayko MM, Reynolds CP . Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24: 148–154.

    Article  CAS  PubMed  Google Scholar 

  19. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    CAS  PubMed  Google Scholar 

  20. Nakayama T, Yao L, Tosato G . Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 2004; 114: 1317–1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grutzkau A, Kruger-Krasagakes S, Baumeister H, Schwarz C, Kogel H, Welker P et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol Biol Cell 1998; 9: 875–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W et al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol 2003; 171: 4830–4836.

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama T, Mutsuga N, Yao L, Tosato G . Prostaglandin E2 promotes degranulation-independent release of MCP-1 from mast cells. J Leukoc Biol 2006; 79: 95–104.

    Article  CAS  PubMed  Google Scholar 

  24. Qu Z, Liebler JM, Powers MR, Galey T, Ahmadi P, Huang XN et al. Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 1995; 147: 564–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bissell MJ, Labarge MA . Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer cell 2005; 7: 17–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schedin P, Elias A . Multistep tumorigenesis and the microenvironment. Breast Cancer Res 2004; 6: 93–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molin D, Fischer M, Xiang Z, Larsson U, Harvima I, Venge P et al. Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin's disease. Br J Haematol 2001; 114: 616–623.

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  29. Takeshita K, Hayashi M, Iino S, Kondo T, Inden Y, Iwase M et al. Increased expression of plasminogen activator inhibitor-1 in cardiomyocytes contributes to cardiac fibrosis after myocardial infarction. Am J Pathol 2004; 164: 449–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Blirando K, Milliat F, Martelly I, Sabourin JC, Benderitter M, Francois A . Mast cells are an essential component of human radiation proctitis and contribute to experimental colorectal damage in mice. Am J Pathol 2011; 178: 640–651.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Crocker J, Smith PJ . A quantitative study of mast cells in Hodgkin's disease. J Clin Pathol 1984; 37: 519–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tataroglu C, Sarioglu S, Kargi A, Ozkal S, Aydin O . Fibrosis in Hodgkin and non-Hodgkin lymphomas. Pathol, Res Pract 2007; 203: 725–730.

    Article  Google Scholar 

  33. Butcher DT, Alliston T, Weaver VM . A tense situation: forcing tumour progression. Nat Rev Cancer 2009; 9: 108–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adams J . The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4: 349–360.

    Article  CAS  PubMed  Google Scholar 

  35. Nencioni A, Grunebach F, Patrone F, Ballestrero A, Brossart P . Proteasome inhibitors: antitumor effects and beyond. Leukemia 2007; 21: 30–36.

    Article  CAS  PubMed  Google Scholar 

  36. Supajatura V, Ushio H, Nakao A, Akira S, Okumura K, Ra C et al. Differential responses of mast cell Toll-like receptors 2 and 4 in allergy and innate immunity. J Clin Invest 2002; 109: 1351–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wong CK, Tsang CM, Ip WK, Lam CW . Molecular mechanisms for the release of chemokines from human leukemic mast cell line (HMC)-1 cells activated by SCF and TNF-alpha: roles of ERK, p38 MAPK, and NF-kappaB. Allergy 2006; 61: 289–297.

    Article  CAS  PubMed  Google Scholar 

  38. Klemm S, Gutermuth J, Hultner L, Sparwasser T, Behrendt H, Peschel C et al. The Bcl10-Malt1 complex segregates Fc epsilon RI-mediated nuclear factor kappa B activation and cytokine production from mast cell degranulation. J Exp Med 2006; 203: 337–347.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mitsiades CS, Mitsiades N, Hideshima T, Richardson PG, Anderson KC . Proteasome inhibition as a new therapeutic principle in hematological malignancies. Curr Drug Targets 2006; 7: 1341–1347.

    Article  CAS  PubMed  Google Scholar 

  40. Blum KA, Johnson JL, Niedzwiecki D, Canellos GP, Cheson BD, Bartlett NL . Single agent bortezomib in the treatment of relapsed and refractory Hodgkin lymphoma: cancer and leukemia Group B protocol 50206. Leuk Lymphoma 2007; 48: 1313–1319.

    Article  CAS  PubMed  Google Scholar 

  41. Trelle S, Sezer O, Naumann R, Rummel M, Keller U, Engert A et al. Bortezomib in combination with dexamethasone for patients with relapsed Hodgkin's lymphoma: results of a prematurely closed phase II study (NCT00148018). Haematologica 2007; 92: 568–569.

    Article  CAS  PubMed  Google Scholar 

  42. Thiele J, Kvasnicka HM, Beelen DW, Wenzel P, Koepke ML, Leder LD et al. Macrophages and their subpopulations following allogenic bone marrow transplantation for chronic myeloid leukaemia. Virchows Arch 2000; 437: 160–166.

    Article  CAS  PubMed  Google Scholar 

  43. Papandreou CN, Daliani DD, Nix D, Yang H, Madden T, Wang X et al. Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 2004; 22: 2108–2121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Japanese Grant-in-Aid for Scientific Research, (C) 20591118. We thank Dr Akio Masuda for helpful suggestions. We also wish to express our appreciation to Ms Chika Wakamatsu for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Nakayama.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizuno, H., Nakayama, T., Miyata, Y. et al. Mast cells promote the growth of Hodgkin's lymphoma cell tumor by modifying the tumor microenvironment that can be perturbed by bortezomib. Leukemia 26, 2269–2276 (2012). https://doi.org/10.1038/leu.2012.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.81

Keywords

This article is cited by

Search

Quick links