Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Small molecule antibody targeting HLA class I inhibits myeloma cancer stem cells by repressing pluripotency-associated transcription factors

Abstract

Cancer stem cells have been proposed to be responsible for tumorigenesis and recurrence in various neoplastic diseases, including multiple myeloma (MM). We have previously reported that MM cells specifically express HLA class I at high levels and that single-chain Fv diabody against this molecule markedly induces MM cell death. Here we investigated the effect of a new diabody (C3B3) on cancer stem cell-like side population (SP) cells. SP fraction of MM cells highly expressed ABCG2 and exhibited resistance to chemotherapeutic agents; however, C3B3 induced cytotoxicity in both SP cells and main population (MP) cells to a similar extent. Moreover, C3B3 suppressed colony formation and tumorigenesis of SP cells in vitro and in vivo. Crosslinking of HLA class I by C3B3 mediated disruption of lipid rafts and actin aggregation, which led to inhibition of gene expression of β-catenin and pluripotency-associated transcription factors such as Sox2, Oct3/4 and Nanog. Conversely, knockdown of Sox2 and Oct3/4 mRNA reduced the proportion of SP cells, suggesting that these factors are essential in maintenance of SP fraction in MM cells. Thus, our findings reveal that immunotherapeutic approach by engineered antibodies can overcome drug resistance, and provide a new basis for development of cancer stem cell-targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med. 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  4. Huff CA, Matsui W . Multiple myeloma cancer stem cells. J Clin Oncol 2008; 26: 2895–2900.

    Article  PubMed  Google Scholar 

  5. Hamburger A, Salmon SE . Primary bioassay of human myeloma stem cells. J Clin Invest 1977; 60: 846–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu C, Alman BA . Side population cells in human cancers. Cancer Lett 2008; 268: 1–9.

    Article  CAS  PubMed  Google Scholar 

  7. Scharenberg CW, Harkey MA, Torok-Storb B . The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99: 507–512.

    Article  CAS  PubMed  Google Scholar 

  8. Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, Hazlehurst L et al. ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 2006; 108: 3881–3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  10. Loh YS, Mo S, Brown RD, Yamagishi T, Yang S, Joshua DE et al. Presence of Hoechst low side populations in multiple myeloma. Leuk Lymphoma 2008; 49: 1813–1816.

    Article  PubMed  Google Scholar 

  11. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 2008; 68: 190–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jakubikova J, Adamia S, Kost-Alimova M, Klippel S, Cervi D, Daley JF et al. Lenalidomide targets clonogenic side population in multiple myeloma: pathophysiologic and clinical implications. Blood 2011; 117: 4409–4419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  14. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  PubMed  Google Scholar 

  15. Pasca di Magliano M, Hebrok M . Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 2003; 3: 903–911.

    Article  PubMed  Google Scholar 

  16. Derksen PW, Tjin E, Meijer HP, Klok MD, MacGillavry HD, van Oers MH et al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells. Proc Natl Acad Sci USA 2004; 101: 6122–6127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peacock CD, Wang Q, Gesell GS, Corcoran-Schwartz IM, Jones E, Kim J et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 4048–4053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI . Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 2008; 111: 2220–2229.

    Article  CAS  PubMed  Google Scholar 

  19. Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD et al. Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 7516–7521.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jaenisch R, Young R . Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132: 567–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  24. Miki T, Yasuda SY, Kahn M . Wnt/beta-catenin sgnaling in embryonic stem cell self-renewal and somatic cell reprogramming. Stem Cell Rev 2011; 21: 21.

    Google Scholar 

  25. Marson A, Foreman R, Chevalier B, Bilodeau S, Kahn M, Young RA et al. Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 2008; 3: 132–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang J, Yi Q . Killing tumor cells through their surface beta(2)-microglobulin or major histocompatibility complex class I molecules. Cancer 2010; 116: 1638–1645.

    Article  CAS  PubMed  Google Scholar 

  27. Kimura N, Kawai S, Kinoshita Y, Ishiguro T, Azuma Y, Ozaki S et al. 2D7 diabody bound to the alpha2 domain of HLA class I efficiently induces caspase-independent cell death against malignant and activated lymphoid cells. Biochem Biophys Res Commun 2004; 325: 1201–1209.

    Article  CAS  PubMed  Google Scholar 

  28. Sekimoto E, Ozaki S, Ohshima T, Shibata H, Hashimoto T, Abe M et al. A single-chain Fv diabody against human leukocyte antigen-A molecules specifically induces myeloma cell death in the bone marrow environment. Cancer Res 2007; 67: 1184–1192.

    Article  CAS  PubMed  Google Scholar 

  29. Jalili A, Ozaki S, Hara T, Shibata H, Hashimoto T, Abe M et al. Induction of HM1.24 peptide-specific cytotoxic T lymphocytes by using peripheral-blood stem-cell harvests in patients with multiple myeloma. Blood 2005; 106: 3538–3545.

    Article  CAS  PubMed  Google Scholar 

  30. Goto T, Kennel SJ, Abe M, Takishita M, Kosaka M, Solomon A et al. A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood 1994; 84: 1922–1930.

    CAS  PubMed  Google Scholar 

  31. Yang J, Zhang X, Wang J, Qian J, Zhang L, Wang M et al. Anti beta2-microglobulin monoclonal antibodies induce apoptosis in myeloma cells by recruiting MHC class I to and excluding growth and survival cytokine receptors from lipid rafts. Blood 2007; 110: 3028–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reya T, Clevers H . Wnt signalling in stem cells and cancer. Nature 2005; 434: 843–850.

    Article  CAS  PubMed  Google Scholar 

  33. Fong H, Hohenstein KA, Donovan PJ . Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 2008; 26: 1931–1938.

    Article  CAS  PubMed  Google Scholar 

  34. Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y . SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 2008; 98: 824–831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adachi K, Suemori H, Yasuda SY, Nakatsuji N, Kawase E . Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells 2010; 15: 455–470.

    CAS  PubMed  Google Scholar 

  36. Niwa H, Miyazaki J, Smith AG . Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372–376.

    Article  CAS  PubMed  Google Scholar 

  37. Niwa H, Ogawa K, Shimosato D, Adachi K . A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 2009; 460: 118–122.

    Article  CAS  PubMed  Google Scholar 

  38. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631–642.

    Article  CAS  PubMed  Google Scholar 

  39. Navarro P, Oldfield A, Legoupi J, Festuccia N, Dubois A, Attia M et al. Molecular coupling of Tsix regulation and pluripotency. Nature 2010; 468: 457–460.

    Article  CAS  PubMed  Google Scholar 

  40. Jagani Z, Wiederschain D, Loo A, He D, Mosher R, Fordjour P et al. The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells. Cancer Res 2010; 70: 5528–5538.

    Article  CAS  PubMed  Google Scholar 

  41. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    Article  CAS  PubMed  Google Scholar 

  42. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  PubMed  Google Scholar 

  43. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T et al. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 2004; 104: 2484–2491.

    Article  CAS  PubMed  Google Scholar 

  44. Feng Y, Wen J, Mike P, Choi DS, Eshoa C, Shi ZZ et al. Bone marrow stromal cells from myeloma patients support the growth of myeloma stem cells. Stem Cells Dev 2010; 19: 1289–1296.

    Article  CAS  PubMed  Google Scholar 

  45. Lee MY, Ryu JM, Lee SH, Park JH, Han HJ . Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J Lipid Res 2010; 51: 2082–2089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brennan SK, Wang Q, Tressler R, Harley C, Go N, Bassett E et al. Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS One 2010; 5: e12487.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 2007; 204: 831–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms A Oda and H Amou for their excellent technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research (C) for SO and Scientific Research (A) for TM from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ozaki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author Contributions

AI and SO designed and conducted in vitro and in vivo studies, and prepared the manuscript. DT and KI conducted flow cytometric SP analysis. TH, SF, SN, HM, AN, KK, KT and MA provided clinical samples. KW and MH contributed to in vivo studies. HO generated the diabody. TM supervised the project.

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikegame, A., Ozaki, S., Tsuji, D. et al. Small molecule antibody targeting HLA class I inhibits myeloma cancer stem cells by repressing pluripotency-associated transcription factors. Leukemia 26, 2124–2134 (2012). https://doi.org/10.1038/leu.2012.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.78

Keywords

This article is cited by

Search

Quick links