Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Optimal induction of myeloma cell death requires dual blockade of phosphoinositide 3-kinase and mTOR signalling and is determined by translocation subtype

Abstract

Novel inhibitors of PI3K, Akt and mTOR have been developed recently, some of which have entered clinical trials. Although such compounds inhibit cell proliferation, their effects on cell survival, an important determinant of clinical response, are less distinct. Using a broad panel of myeloma cell lines and primary patient samples, we show that dual PI3K and mTOR inhibition can induce cell death. The effects are most marked in cells expressing the t(4;14) translocation, whereas t(11;14) cells are largely resistant. Using specific inhibitors of individual pathway components, we show that optimal induction of cell death requires inhibition of both PI3K and mTOR. This is due to a PI3K-independent component of mTOR activation downstream of the MAP kinase pathway. Novel mTOR kinase inhibitors, which block both TORC1 and TORC2 complexes thereby also reducing Akt activity, are less effective than dual PI3K/mTOR inhibitors because of feedback activation of PI3K signalling. Dual PI3K/mTOR inhibitors sensitise t(4;14) and t(14;16), but not t(11;14), expressing cells to the cytotoxic effects of dexamethasone. We have identified a robust cytogenetic biomarker for response to PI3K/mTOR inhibition—these results will inform the design and prioritisation of clinical studies with novel inhibitors in genetic subgroups of myeloma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK et al International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009 23: 2210–2221.

    Article  CAS  Google Scholar 

  2. Avet-Loiseau H, Leleu X, Roussel M, Moreau P, Guerin-Charbonnel C, Caillot D et al Bortezomib plus dexamethasone induction improves outcome of patients with t(4;14) myeloma but not outcome of patients with del(17p). J Clin Oncol 2010 28: 4630–4634.

    Article  CAS  Google Scholar 

  3. Liu P, Cheng H, Roberts TM, Zhao JJ . Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009 8: 627–644.

    Article  CAS  Google Scholar 

  4. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B . The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010 11: 329–341.

    Article  CAS  Google Scholar 

  5. Wong KK, Engelman JA, Cantley LC . Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 2010 20: 87–90.

    Article  CAS  Google Scholar 

  6. Foster KG, Fingar DC . Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010 285: 14071–14077.

    Article  CAS  Google Scholar 

  7. Efeyan A, Sabatini DM . mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 2010 22: 169–176.

    Article  CAS  Google Scholar 

  8. Brachmann S, Fritsch C, Maira SM, Garcia-Echeverria C . PI3K and mTOR inhibitors: a new generation of targeted anticancer agents. Curr Opin Cell Biol 2009 21: 194–198.

    Article  CAS  Google Scholar 

  9. Ismail SI, Mahmoud IS, Msallam MM, Sughayer MA . Hotspot mutations of PIK3CA and AKT1 genes are absent in multiple myeloma. Leuk Res 2010 34: 824–826.

    Article  CAS  Google Scholar 

  10. Ge NL, Rudikoff S . Expression of PTEN in PTEN-deficient multiple myeloma cells abolishes tumor growth in vivo. Oncogene 2000 19: 4091–4095.

    Article  CAS  Google Scholar 

  11. Hyun T, Yam A, Pece S, Xie X, Zhang J, Miki T et al Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood 2000 96: 3560–3568.

    CAS  Google Scholar 

  12. Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC et al The AKT kinase is activated in multiple myeloma tumor cells. Blood 2001 98: 2853–2855.

    Article  CAS  Google Scholar 

  13. Choi Y, Zhang J, Murga C, Yu H, Koller E, Monia BP et al PTEN, but not SHIP and SHIP2, suppresses the PI3K/Akt pathway and induces growth inhibition and apoptosis of myeloma cells. Oncogene 2002 21: 5289–5300.

    Article  CAS  Google Scholar 

  14. Pene F, Claessens YE, Muller O, Viguie F, Mayeux P, Dreyfus F et al Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. Oncogene 2002 21: 6587–6597.

    Article  CAS  Google Scholar 

  15. Chang H, Qi XY, Claudio J, Zhuang L, Patterson B, Stewart AK . Analysis of PTEN deletions and mutations in multiple myeloma. Leuk Res 2006 30: 262–265.

    Article  CAS  Google Scholar 

  16. Younes H, Leleu X, Hatjiharissi E, Moreau AS, Hideshima T, Richardson P et al Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res 2007 13: 3771–3775.

    Article  CAS  Google Scholar 

  17. Zollinger A, Stuhmer T, Chatterjee M, Gattenlohner S, Haralambieva E, Muller-Hermelink HK et al Combined functional and molecular analysis of tumor cell signaling defines 2 distinct myeloma subgroups: Akt-dependent and Akt-independent multiple myeloma. Blood 2008 112: 3403–3411.

    Article  Google Scholar 

  18. Frost P, Moatamed F, Hoang B, Shi Y, Gera J, Yan H et al In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model. Blood 2004 104: 4181–4187.

    Article  CAS  Google Scholar 

  19. McMillin DW, Ooi M, Delmore J, Negri J, Hayden P, Mitsiades N et al Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 2009 69: 5835–5842.

    Article  CAS  Google Scholar 

  20. Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W et al Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002 62: 5027–5034.

    CAS  Google Scholar 

  21. Baumann P, Mandl-Weber S, Oduncu F, Schmidmaier R . The novel orally bioavailable inhibitor of phosphoinositol-3-kinase and mammalian target of rapamycin, NVP-BEZ235, inhibits growth and proliferation in multiple myeloma. Exp Cell Res 2009 315: 485–497.

    Article  CAS  Google Scholar 

  22. Coiffier B, Ribrag V . Exploring mammalian target of rapamycin (mTOR) inhibition for treatment of mantle cell lymphoma and other hematologic malignancies. Leuk Lymphoma 2009 50: 1916–1930.

    Article  CAS  Google Scholar 

  23. Shi Y, Yan H, Frost P, Gera J, Lichtenstein A . Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 2005 4: 1533–1540.

    Article  CAS  Google Scholar 

  24. Bergsagel PL, Kuehl WM . Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol 2005 23: 6333–6338.

    Article  CAS  Google Scholar 

  25. Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H et al Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 2009 106: 22299–22304.

    Article  CAS  Google Scholar 

  26. Faber AC, Li D, Song Y, Liang MC, Yeap BY, Bronson RT et al Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA 2009 106: 19503–19508.

    Article  CAS  Google Scholar 

  27. Turke AB, Engelman JA . PIKing the right patient. Clin Cancer Res 2010 16: 3523–3525.

    Article  CAS  Google Scholar 

  28. Vanhaesebroeck B, Vogt PK, Rommel C . PI3K: from the bench to the clinic and back. Curr Top Microbiol Immunol 2010 347: 1–19.

    Google Scholar 

  29. Baker AF, Dragovich T, Ihle NT, Williams R, Fenoglio-Preiser C, Powis G . Stability of phosphoprotein as a biological marker of tumor signaling. Clin Cancer Res 2005 11: 4338–4340.

    Article  CAS  Google Scholar 

  30. Burns JA, Li Y, Cheney CA, Ou Y, Franlin-Pfeifer LL, Kuklin N et al Choice of fixative is crucial to successful immunohistochemical detection of phosphoproteins in paraffin-embedded tumor tissues. J Histochem Cytochem 2009 57: 257–264.

    Article  CAS  Google Scholar 

  31. Pinhel IF, Macneill FA, Hills MJ, Salter J, Detre S, A'Hern R et al Extreme loss of immunoreactive p-Akt and p-Erk1/2 during routine fixation of primary breast cancer. Breast Cancer Res 2010 12: R76.

    Article  Google Scholar 

  32. Marchio C, Dowsett M, Reis-Filho JS . Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box. BMC Med 2011 9: 41.

    Article  CAS  Google Scholar 

  33. Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 2007 67: 5840–5850.

    Article  CAS  Google Scholar 

  34. Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O et al A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 2006 125: 733–747.

    Article  CAS  Google Scholar 

  35. Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D et al Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors. Bioorg Med Chem Lett 2005 15: 761–764.

    Article  CAS  Google Scholar 

  36. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C et al Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008 7: 1851–1863.

    Article  CAS  Google Scholar 

  37. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009 284: 8023–8032.

    Article  CAS  Google Scholar 

  38. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 2004 101: 13489–13494.

    Article  CAS  Google Scholar 

  39. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999 286: 1741–1744.

    Article  CAS  Google Scholar 

  40. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009 7: e38.

    Article  Google Scholar 

  41. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM et al Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 2009 421: 29–42.

    Article  CAS  Google Scholar 

  42. Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B et al Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009 69: 6232–6240.

    Article  CAS  Google Scholar 

  43. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW et al Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006 10: 331–342.

    Article  CAS  Google Scholar 

  44. Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M et al Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res 2006 66: 2305–2313.

    Article  CAS  Google Scholar 

  45. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009 9: 550–562.

    Article  CAS  Google Scholar 

  46. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009 137: 873–886.

    Article  CAS  Google Scholar 

  47. Walker BA, Wardell CP, Chiecchio L, Smith EM, Boyd KD, Neri A et al Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood 2011 117: 553–562.

    Article  CAS  Google Scholar 

  48. Billottet C, Banerjee L, Vanhaesebroeck B, Khwaja A . Inhibition of class I phosphoinositide 3-kinase activity impairs proliferation and triggers apoptosis in acute promyelocytic leukemia without affecting atra-induced differentiation. Cancer Res 2009 69: 1027–1036.

    Article  CAS  Google Scholar 

  49. Hoang B, Frost P, Shi Y, Belanger E, Benavides A, Pezeshkpour G et al Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 2010 116: 4560–4568.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Cancer Research UK and Leukaemia and Lymphoma Research UK. The work was undertaken at the University College London/University College London Hospitals, who received a proportion of funding from the Department of Health’s NIHR Comprehensive Biomedical Research Centres funding scheme and is a CRUK Cancer Centre and a Leukaemia and Lymphoma Research Centre of Excellence.

Author Contributions

AK and KY designed the study; JQ and KY provided vital reagents; CS, CWC and AK carried out experiments; AK wrote the manuscript that was reviewed by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Khwaja.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stengel, C., Cheung, C., Quinn, J. et al. Optimal induction of myeloma cell death requires dual blockade of phosphoinositide 3-kinase and mTOR signalling and is determined by translocation subtype. Leukemia 26, 1761–1770 (2012). https://doi.org/10.1038/leu.2012.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.69

Keywords

This article is cited by

Search

Quick links